

Torrington. Fafnir.

Mounting Guide

TIMKEN®

Mounting Guide

TABLE OF CONTENTS

INTRODUCTION

The intent of this mounting guide is to provide the information you need to properly mount Timken[®] Torrington[®] ball, roller and needle bearings. For additional assistance please feel free to contact a Timken Authorized Distributor or sales office in your area. For your nearest Timken sales representative, call (800) 223-1954. Outside the U.S. and Canada, call (330) 438-3000.

PRODUCT INFORMATION

The Timken[®] Fafnir[®] line from The Timken Company originated the wide inner ring bearing design for ball bearings which could be easily mounted on straight shafts and positioned without shoulders, locknuts or adapters.

The internal bearing construction is basically the same as the deep race, single row radial type with ability to carry radial, thrust and combined loads, while providing low friction qualities which are characteristic of high-grade bearings. The inner ring is generally extended on both sides of the race to provide additional shaft support, and is locked to the shaft by specially designed setscrews or by the Timken-originated, eccentric self-locking collar or concentric collar. The wide inner ring bearings are also available with cylindrical or spherical outside diameters. The cylindrical or straight O.D. type is used for mounting in straight-bored housings. The spherical O.D. type must be mounted in a corresponding spherical seat and is used to compensate for shaft or housing misalignments.

FAFNIR WIDE INNER RING BEARINGS WITH LOCKING COLLARS

The following series are available with the cam (self-locking) collar.

RR Series

These bearings feature the flareout, contact type R-seal which encloses a synthetic rubber impregnated washer between two metal caps. Most sizes incorporate the Fafnir Shroud-Seal design. R-seal wide inner ring bearings are available in the following non-relubricatable variations: KR (one seal, cylindrical O.D.), KRR and KRRB (two seals). Relubricatable versions are: G-KRR, G-KRRB and GN-KRRB (heavy-duty).

RA-RR Series

The RA-RR series features an extended inner ring and self-locking collar for simple effective shaft retention in a standard series bearing. The newly developed, positive contact, land-riding R-seal provides improved protection against the heavy contamination encountered in many applications. All sizes have a heat stabilized, moisture conditioned 6/6 nylon retainer which has proven extremely effective under conditions of misalignment.

RA-RR extended inner ring bearings are available as RA-RR (two-seals, straight O.D.) and RA-RRB (two seals, spherical O.D.). Relubricatable versions are GRA-RR and GRA-RRB.

Tri-Ply-Seal Series

Tri-Ply Seal bearings are designed for environments where severe conditions and moisture are present. The new one piece Tri-Ply seals incorporate a highly effective seal design molded to an exterior shroud cap. The shroud cap protects the seal lips from fiber wrap and abrasion while enhancing the overall sealing effectiveness of the unit. All units incorporate the self-locking collar and have a nylon retainer. Tri-ply Seal bearings are available in both a non-relubricatable (KPPB) and relubricatable version (G- KPPB).

External Self-Aligning Series

The construction of this series permits the inner assembly, which contains an open type ball bearing with spherical O.D. to align in the seat of the mating outer ring. The seat of this outer ring is matched with the spherical O.D. of the ball bearing outer ring providing unrestricted self-alignment which allows the inner assembly to become square and true with the shaft. Self-aligning units are available in both standard SM-S or heavy SMN-S series.

RA-DD Series Bearings

The new RA-DD series bearings are extended inner ring type with cam locking collars. They incorporate two close fitting non-contact grease shields to effectively retain lubricant and provide protection against harmful contaminants. The non-contact metallic shields provide improved high speed and low torque performance such as required for high speed printing press applications. The 6/6 molded nylon retainer has proven extremely effective under conditions of misalignment. These bearings are dimensionally inter-changable and have the same load capacities as the RA-RR series. (Available in 5%"-1 ½" shaft sizes.)

WIDE INNER RING BEARINGS WITH SETSCREW LOCKING DEVICE

The following series are available with the setscrew locking device with special setscrews that are resistant to loosening during operation.

YA-RR series

The (G)YA-RR(B)series relubricatable and non-relubricatable bearings are an extended inner ring type with specially designed setscrews. Positive contact land-riding R-Seals provide protection against harmful contaminants and retain lubricant.

Setscrew Series bearings are available in both non-relubricatable version YA-RRB and relubricatable version GYA-RRB. Both types have nylon retainers.

ER Series

This series offers industry standard mounting dimensions and standard nomenclature for a large variety of sizes of relubricatable, extended inner ring bearings for through-bored housings. All bearings in this series have nylon retainers and are equipped with snap rings which eliminate the need for machining housing shoulders.

Positive contact landriding R Seals provide protection against harmful contaminants and retain lubricant. ER bearings are all black oxide coated for corrosion resistance.

RA-RR Series

Tri-Ply-Seal Series

External Self-Aligning Series

ER Series

FAFNIR WIDE INNER RING BEARINGS WITH CONCENTRIC COLLARS **GC-KRRB Series**

The GC-KRRB wide inner ring bearings are relubricatable with spherical outside diameters, nylon retainers and shroud seals. The metal shroud maintains tight seal contact against the inner ring and shields the rubber seals from damage due to dirt or fiber wrap. The concentric collar is locked to the shaft by two setscrews, located 120° apart, which are mated with threaded holes in the collar and drilled holes in the bearing inner ring.

CAM (SELF-LOCKING) COLLAR

1. Observe cam design of the wide inner ring and self locking collar.
2. Mate the cam of the collar with the cam of the wide inner ring.
3. Press the locking collar against the wide inner ring and turn in the direction of shaft rotation until tightly engaged.
4. With drift pin in collar hole, strike in direction of shaft rotation to lock. For Stationary shafts and outer ring rotation, turn collar in opposite direction of rotation.
 5. Tighten setscrew in collar. CONCENTRIC COLLAR For simplified installation, the concentric collar is normally assembled to the wide inner ring for shipment. Slip the complete unit on the shaft and tighten both setscrews.

shipment. Slip the complete unit on the shaft and tighten both setscrews.

PRODUCT INFORMATION

Ball Bearing housed units, originated by Timken's own Fafnir line, are available in a wide variety of types and sizes to accomodate a complete range of operating conditions.

These units generally have cast iron housings and are designed for mounting on straight shafts with a slip fit. The self-locking collar and the setscrew inner bearing designs provide ease in mounting, bolt holes in housings take standard bolts for assembling these units to machinery frames. Several series are also available with the concentric locking collar.

As most of these units are made with a self aligning feature, it is

PILLOW BLOCKS

Pillow blocks, the most commonly used type of mounted units, are designed to provide shaft support where the mounting surface is parallel to the shaft axis. The bolt holes are usually slotted for adjustment during mounting.

Pillow blocks are supplied in both standard and heavy duty series. Pressed steel and rubber pillow blocks are also available for light duty applications.

FLANGED CARTRIDGES

Flanged cartridges are used where a shaft passes through the machine frame at a right angle. A four bolt mounting is the most common, however, where the mounting area is restricted, three and two bolt versions are available. A piloted flanged cartridge, also available, provides additional mounting accuracy and support.

Flanged cartridges are supplied in both standard and heavy duty series. Iron and rubber flanged cartridges are also available.

A complete line of Flangette Units, pressed steel flanged cartridges, provides an economical solution to light duty applications. Two, three and four bolt mountings are available along with a relubricable version.

CYLINDRICAL CARTRIDGES

Cylindrical cartridges, like flanged cartridges, provide shaft support where the shaft axis is perpendicular to and passing through a machined housing which is generally very thick. The outside diameter of the cylindrical cartridges permits mounting with a press fit into a straight, through-bored housing.

Cylindrical cartridges have a machined spherical bearing seat to provide initial shaft alignment in standard duty applications. Synthetic, conductive rubber cylindrical cartridges are also available for applications where low cost, light duty, low noise operation is essential.

TAKE-UP UNITS

Take-up units are used where shaft adjustment and belt tightening devices are required, such as conveyor applications. Frames for take-up units provide for either side or top mounting.

Take-up units are available in cast iron for standard duty and pressed steel for economical, light duty applications.

unnecessary for the user to refine his design in excess of practical limits. If desired, units incorporating prelubricated wide inner ring bearings may be furnished without grease fittings.

There are several basic types of housed units available: Pillow Blocks, Flanged Cartridges, Flangette Units, Cylindrical Cartridges and Take-up Units. The type required is generally determined by its application and mounting requirements. Within the basic type selected, numerous variations allow for load factors, shaft sizes, mounting surface dimensions, base to shaft center line heights and lubrication requirements.

FAFNIR SELF-LOCKING COLLAR INSTALLATION

Most Timken Fafnir housed units come equipped with the self-locking collar to facilitate the mounting of wide inner ring bearings. This self-locking collar eliminates the need for locknuts, washers, shoulders, sleeves, and adapters.

The locking collar has a counterbored recess which is made purposely eccentric to the bore. The collar recess and the end of the bearing inner ring with which it engages are both machined so that they act as mating cams when on the shaft.

When the collar is engaged to the inner ring, it grips the shaft tightly with a positive binding action that increases with use. No adjustments of any kind are necessary.

FAFNIR SETSCREW LOCKING BEARING

Steps 1 and 2 can be repeated from the Self Locking Collar Installation above. To lock the setscrew bearing, simply tighten each inner ring setscrew to the recommended torque listed by shaft size. See chart below.

		Recom	Recommended						
Shaft Size	in/mm	Torque in lbs.	(n • m)						
1/2-11/16	17 mm	35 in lbs	4 (n • m)						
³ /4 -1	20-25 mm	80 in lbs	9 (n • m)						
1 ¹ /16-1 ³ /4	30-45 mm	155 in lbs	18 (n • m)						
1 ¹³ /16-2 ³ /16	50-55 mm	275 in lbs	31 (n • m)						

It may be necessary to rotate the shaft to provide an easy access of the setscrew wrench to the setscrews. To disassemble, loosen the setscrews.

CONCENTRIC COLLAR

For simplified installation of Fafnir housed units equipped with concentric collar bearings, the collar is normally assembled to the wide inner ring for shipment. Slip the complete unit on the shaft following steps 1 and 2 described for the self-locking collar procedure, and tighten both setscrews.

MOUNTING PROCEDURES – TORRINGTON SPHERICAL ROLLER BEARINGS

Depending on the size of bearing and the application, there are different methods for mounting rolling bearings. In all methods, however, certain basic rules must be observed.

Cleanliness

Choose a clean environment. Work in an atmosphere free from dust or moisture. If this is not obtainable, and sometimes in the field it isn't, the installer should make every effort to insure cleanliness by use of protective screens, clean clothes, etc.

Plan the work

Know in advance what you are going to do and have all necessary tools at hand. This reduces the amount of time for the job and lessens the chance for dirt to get into the bearing.

Inspection and preparation

All component parts of the machine should be on hand and thoroughly cleaned before proceeding. Housings should be cleaned, including blowing out the oil holes. **Do not use an air hose on bearings.** If blind holes are used, insert a magnetic rod to remove metal chips that might have become lodged there during fabrication.

Shaft shoulders and spacer rings contacting the bearing should be square with the shaft axis. The shaft fillet must be small enough to clear the radius of the bearing.

On original installations, all component parts should be checked against the detail specification prints for dimensional accuracy. Shaft and housing should be carefully checked for size and roundness.

Shaft and housing finish

Shaft surfaces on which the bearing will be mounted must be clean and free from nicks or burrs. For an application with stationary housing and rotating shaft, it is suggested the bearing seat on the shaft be ground to 63 RMS maximum. If it is impractical to use a ground finish, a machined finish of 125 RMS is acceptable in many cases, but the amount of interference fit should be slightly increased. Consult our Engineering Department for recommendations.

For a stationary outer ring which is required to float (i.e. slide axially in the housing), a housing surface finish of 63 RMS maximum is suggested. Where the outer ring is not required to float, a surface finish of 125 RMS maximum is generally satisfactory.

DON'T REMOVE THE BEARING FROM ITS WRAPPER UNTIL ACTUALLY READY TO MOUNT IT.

MOUNTING STRAIGHT BORE BEARINGS

Heat expansion method

Most applications require a tight interference fit on the shaft. Mounting is simplified by heating the bearing to expand it sufficiently to slide easily onto the shaft. Two methods of heating are in common use:

1. Tank of heated oil.

2. Induction heating.

The first is accomplished by heating the bearing in a tank of oil having a **high flash** point. The oil temperature should not be allowed to exceed 250° F. A temperature of 200°F is sufficient for most applications. The bearing should be heated at this temperature, generally for 20 or 30 minutes, until it is expanded sufficiently to slide onto the shaft very easily.

The induction heating method is particularly suited for mounting small bearings in production line assembly. Induction heating is rapid, and care must be taken to prevent bearing temperature from exceeding 200° F. Trial runs with the unit and bearing are usually necessary to obtain the proper timing. Thermal crayons (such as Tempilstics*) which melt at predetermined temperatures can be used to check the bearing temperature.

While the bearing is still hot, it should be positioned squarely against the shoulder. Lockwashers and locknuts, or clamping plates, are then installed to hold the bearing against the shoulder of the shaft. As the bearing cools, the locknut or clamping plate should be tightened. In cases of outer ring rotation,

* Registered Trademark, Tempil Corp.

where the outer ring is a tight fit in the housing, the housing member can be expanded by heating. The oil bath is shown in Figure 1. The bearing should not be in direct contact

with the heat source. The usual arrangement is to have a screen several inches off the bottom of the tank. Small support blocks separate the bearing from the screen. It is important to keep the bearing away from any localized high-heat source that may raise its temperature excessively, resulting in race hardness reduction.

Flame-type burners are commonly used. An automatic device for temperature control is desirable. If safety regulations prevent the use of an open heated oil bath, a mixture of 15% soluble-oil in water may be used. This mixture may be heated to a maximum temperature of about 200° F., without being flammable. The bath should be checked from time to time to insure its proper composition as the water evaporates. The bath leaves a thin film of oil on the bearing sufficient for temporary rust prevention, but normal lubrication should be supplied to the bearing as soon as possible after installation. Be sure all of the soluble-oil in water solution has been drained away from the bearing.

Arbor press method

The alternative method of mounting, generally used only on smaller sizes, is to press the bearing onto the shaft or into the housing. This can be done by using an arbor press and a mounting tube as shown in Figure 2. The tube can be of soft steel with inside diameter slightly larger than the shaft. The O.D. of the tube should not exceed the maximum shoulder height. The tube should be faced square at both ends, thoroughly clean inside and out, and long enough to clear the end of the shaft after the bearing is mounted.

If the outer ring is being pressed into the housing, the O.D. of the mounting tube should be slightly smaller than the housing bore, and the I.D. should not be less than the recommended housing shoulder diameter in the tables of dimensions.

Coat the shaft with light machine oil to reduce the force needed for the press fit. Carefully place the bearing on the shaft making sure it is square with the shaft axis. Apply steady pressure from the arbor ram to drive the bearing firmly against the shoulder.

Never attempt to make a press fit on a shaft by applying pressure to the outer ring, or a press fit in a housing by applying pressure to the inner ring.

SHAFT MOUNTING TORRINGTON TAPERED BORE SPHERICAL ROLLER BEARINGS

Although the fit of a tapered bore spherical roller bearing can be determined by measuring the distance the bearing is forced onto the tapered seat, it is more practical to measure the **reduction of radial internal clearance** caused by expansion of the inner ring. This procedure requires determining the **initial** RIC before mounting, and checking the RIC during mounting until the proper **reduction of RIC** has been accomplished.

To determine initial RIC, the following procedure should be observed. A feeler gauge with the thinnest blade of 0.0015" is used. Place the bearing in an upright position with inner and outer ring faces parallel. Place thumbs on the inner ring bore and oscillate inner ring two or three times, pressing down firmly. This "seats" the inner ring and rolling elements. Position the individual roller assemblies so that a roller is at the top of the inner ring – on both sides of the bearing. Press the two top rollers inward to assure proper contact with the inner ring raceways. With the rollers in correct position, insert a thin blade of the feeler gauge between the rollers. Move it carefully over the top

roller, between the roller and outer ring raceway. Repeat this procedure, using thicker feeler gauge blades, until one is found that will not go through. The blade thickness that preceded the "no-go" blade is a measure of radial internal clearance (RIC) before installation.

Determine the target value of the **reduction of RIC** following procedure outlined in the example following. Start the mounting procedure by lubricating the tapered shaft with a light coat of machine oil. Slide the bearing onto the shaft as far as it will go. As the locknut is tightened, the interference fit builds up resulting in expansion of the inner ring. Periodically measure the RIC to keep track of the **reduction in** RIC.

Continue the procedure until the proper amount of reduction is obtained do not exceed recommended amount of reduction. As a final check, make sure that the remaining RIC equals or exceeds the **minimum mounted** clearance shown on page 10.

During mounting, the RIC should be checked at the unloaded roller. If this happens to be at the bottom, make sure that the roller is raised to seat firmly on the inboard portion of the inner race.

MOUNTING

Adapters vs. Straight Bore

Usually a spherical roller bearing Pillow block assembly is mounted to a straight shaft using a tapered bore bearing and adapter assembly. Standard commercial shafting can be used without additional machining. (Recommended shaft diameters are shown on page 18-21).

Adapter mount also permits maximum flexibility in the axial positioning of the bearing on the shaft and will accommodate light locational thrust loads. Timken® Torrington® pillow blocks for tapered bore and adapter-mounted bearings are available in Series 225, 226, 230, 231K and 232K.

Adapter mounted spherical roller bearings require the correct removal of diametral clearance from the bearing to prevent relative rotation between inner race and sleeve or shaft. Failure to employ proper mounting procedures can cause heating and reduced bearing performance.

When application conditions produce heavy thrust loads or a need exists for exact axial location or a positive shaft interference fit, a direct straight bore mounting may be the best option. This requires a shouldered shaft, machined for proper fit and a straight bore bearing. Torrington pillow block assemblies for straight bore applications are available in Series 222, 223, 231, and 232.

Recommended fits for shafts in cylindrical bore spherical roller bearings are shown on pages 17 through 25. For applications involving heavy shock, vibration, unbalanced rotating loads or other abnormal conditions, consult your Timken sales associate.

Fixed and Float Pillow Blocks

Any style of Torrington pillow blocks can be easily installed either at the float or fixed position on the shaft. For the fixed position, a stabilizing ring is added between the bearing outer ring face and the housing shoulder to positively locate the shaft and prevent axial movement.

Some applications require centering of the bearing in its housing. To accomplish this, two special width stabilizing rings can be ordered.

In the float position, the ring is not used allowing the bearing to move axially (a maximum of %") to compensate for thermal expansion or contraction of the shaft.

Pillow blocks ordered by the numbers in the dimensional tables are fixed units. To order float units specify by adding suffix "Float" or "FL" to the pillow block number.

Closed End Installations

In some applications, the shaft end is designed to terminate inside the pillow block. For such a design, positive fitting end-closure inserts are available to seal out contaminants and retain lubricants. Torrington heavy-duty end plugs include O-rings for positive sealing.

Designers and installers need to make sure the shaft end does not contact the closure. A minimum of $\frac{1}{6}$ " clearance at maximum thermal expansion is recommended between the end of the shaft and the closure. Dimension "Y" in the product catalog tables defines the maximum permissible length of the shaft from center line of the pillow block housing. If end closure is desired, specify by adding "CL" (one end closed) to the pillow block assembly number.

In the manufacture of ball bearings, it is standard practice to assemble rings and balls with a specified internal clearance. This characteristic is necessary to absorb the effect of press fitting the bearing rings at mounting.

Internal clearances sometimes are utilized to compensate for thermal expansion of bearings, shafts and housings or to provide a contact angle in the bearing after mounting.

Internal clearance can be measured either by gauging radially or axially.

Radial measurement is accepted as the more significant characteristic because it is more directly related to shaft and housing fits. It also is the method prescribed by the American Bearing Manufacturers Association (ABMA).

Radial Internal Clearance

The radial internal clearance of a radial contact ball bearing can be defined as the average outer ring raceway diameter minus the average inner ring raceway diameter minus twice the ball diameter.

Radial internal clearance can be measured mechanically by moving the outer ring horizontally as pictured in Figure 1. The total movement of the outer ring when the balls are properly seated in the raceways determines the radial internal clearance. Several readings should be taken using different circumferential orientations of the rings in order to get a comprehensive average reading.

Figure 1

LIMITS FOR RADIAL INTERNAL CLEARANCE OF SINGLE ROW, RADIAL CONTACT BALL BEARINGS UNDER NO LOAD (Applies to Bearings of ABEC-1, ABEC-3, ABEC-5, ABEC-7, and ABEC-9 Tolerances) Tolerance Limits in ten-thousandths inches (.0001") and micrometers (µm)

Ba	asic	н	(2)	R	(0)	Р	(3)	J ((4)	J	J (5)
B Diai	lore meter	Acceptar	nce Limits	Accepta	nce Limits	Accepta	nce Limits	Acceptan	ce Limits	Accepta	nce Limits
0.00	MM	law	hiash	law	hinh	law	hiah	law	hish	law	hinh
Over	inci.	IOW	nign	IOW	nign	IOW	nign	low	nign	IOW	nign
2.5	10	0	3	1	5	3	9	6	11	8	15
		0	7	2	13	8	23	14	29	20	37
10	18	0	3.5	1	7	4	10	7	13	10	18
		0	9	3	18	11	25	18	33	25	45
18	24	0	4	2	8	5	11	8	14	11	19
		0	10	5	20	13	28	20	36	28	48
24	30	0.5	4.5	2	8	5	11	9	16	12	21
		1	11	5	20	13	28	23	41	30	53
30	40	0.5	4.5	2	8	6	13	11	18	16	25
		1	11	6	20	15	33	28	46	40	64
40	50	0.5	4.5	2.5	9	7	14	12	20	18	29
		1	11	6	23	18	36	30	51	45	73
50	65	0.5	6	3.5	11	9	17	15	24	22	35
		1	15	8	28	23	43	38	61	55	90
65	80	0.5	6	4	12	10	20	18	28	26	41
		1	15	10	30	25	51	46	71	65	105
80	100	0.5	7	4.5	14	12	23	21	33	30	47
		1	18	12	36	30	58	53	84	75	120
100	120	1	8	6	16	14	26	24	38	35	55
		2	20	15	41	36	66	61	97	90	140
120	140	1	9	7	19	16	32	28	45	41	63
		2	23	18	48	41	81	71	114	105	160
140	160	1	9	7	21	18	36	32	51	47	71
		2	23	18	53	46	91	81	130	120	180
160	180	1	10	8	24	21	40	36	58	53	79
		2	25	20	61	53	102	91	147	135	200
180	200	1	12	10	28	25	46	42	64	59	91
		2	30	25	71	63	117	107	163	150	230
200	240	1	14	12	32	29	54	50	76	72	105
		3	36	30	81	74	137	127	193	183	267

Continued on the next page

LIMITS FOR RADIAL INTERNAL CLEARANCE OF SINGLE ROW, RADIAL CONTACT BALL BEARINGS UNDER NO LOAD (Applies to Bearings of ABEC-1, ABEC-3, ABEC-5, ABEC-7, and ABEC-9 Tolerances)

Tolerance Limits in ten-thousandths inches (.0001") and micrometers (Lim)

В	Basic		(2)	1	R (0)	1	P (3)	J	(4)	J	IJ (5)
E Dia	Bore Imeter MM	Accepta	Acceptance Limits		ance Limits	Accepta	Acceptance Limits		ce Limits	Acceptance Limits	
Over	Incl.	low	high	low	high	low	high	low	high	low	high
240	280	1	16	13	38	34	62	58	88	84	122
		3	41	33	97	86	157	147	224	213	310
280	320	2	19	16	45	41	71	67	101	97	139
		5	48	41	114	104	180	170	257	246	353
320	370	2	21	18	50	46	82	78	116	112	161
		5	53	46	127	117	208	198	295	284	409
370	430	3	25	22	58	54	95	91	134	130	187
		8	64	56	147	137	241	231	340	330	475
430	500	4	29	26	67	63	110	106	156	152	217
		10	74	66	170	160	279	269	396	386	551
500	570	4	32	29	76	72	125	121	177	173	248
		10	81	74	193	183	318	307	450	439	630
570	640	5	36	33	85	81	140	136	199	195	278
		13	91	85	216	206	356	345	505	495	706
640	710	8	45	42	94	90	155	151	222	218	307
		20	114	107	239	229	394	384	564	554	780
710	800	8	55	51	106	102	175	171	248	244	346
		20	140	130	269	259	445	434	630	620	879
800	1060	11	83	79	139	136	231	227	328	324	452
		28	211	201	353	345	587	577	833	823	1148

Fafnir radial clearance designations correlate with ABMA symbols as follows:

Fafnir Bearing Number ABMA Prefix Symbol Description 2 Snug fit; slight internal clearance; sometimes used to achieve н a minimum of radial or axial play in an assembly, Example: H204K R 0 Medium fit; internal clearance generally satisfactory with recommended shaft and housing fits shown on pages 26-30. Example: RMM204K. Р 3 Loose fit: considerable internal clearance required for applications involving press fits on both inner and outer rings, extra interference fits, or temperature differentials. Example: P204K. Extra Loose fit; large amount of internal clearance for applications J 4 involving large interference fits or temperature differentials. Example: J204K .1.1 5 Extra-Extra Loose fit; extra large amount of internal clearance for applications with large temperature differential and interference fits on both rings.

End play

End play is an alternate method of measuring internal clearance and is rarely used except for certain special applications. End play is determined by mounting the bearing, as shown in Figure 2, with one of its rings clamped to prevent axial movement. A reversing measuring load is applied to the unclamped ring so that the resultant movement of that ring is parallel to the bearing axis. End play is the total movement of the unclamped ring when the load is applied first in one direction and then in the other.

When the inner and outer ring raceway curvatures are accurately known, the free end play can readily be calculated from the values of no load radial clearance by the following formula:

$$E = \sqrt{4dR_D(K_O + K_i - 1) - R_D^2}$$
 or $\cong \sqrt{4dR_D(K_O + K_i - 1)}$

Where R_D^2 is generally a very small value and can be omitted for most calculations without introducing undue inaccuracy.

- E = Free end play where
- K_{O} = outer race contour radius expressed as a decimal fraction of the ball diameter.
- R_D = radial clearance (no load)
- d = ball diameter

Contact Angle

The contact angle (α) is related to internal clearance as follows:

$$\alpha = \sin^{-1} \left(\frac{\mathsf{E}}{2 \; (\mathsf{Ko} + \mathsf{Ki} - 1 \;) \mathsf{d}} \right)$$

The contact angle (α) may also be accurately determined in a production bearing from its pitch diameter (P.D.) and by measuring the number of revolutions (N_c) of the ball and cage assembly relative to rotation (N_i) of the inner ring under a light thrust load.

$$(N_{c}) = .5N_{i}(1 - \frac{d}{P.D.} \cos \alpha)$$
$$\cos \alpha = \frac{P.D.}{d} \qquad \left(\begin{array}{c} 1 - \frac{N_{c}}{.5N_{i}} \end{array}\right)$$

The accuracy of this method of measurement depends greatly upon the care taken in set-up. Balanced weight for thrust loading, vertical truing, slow turning, many turns, minimum lubricant of low viscosity and prerotation are all essential for instance. The races should not be radially restrained during the contact angle measurement.

TORRINGTON RADIAL SPHERICAL ROLLER BEARINGS

Radial Internal Clearance (RIC) is the radial play within a bearing. Torrington bearing RIC's allow a tight fit, with sufficient internal clearance after installation for normal operating conditions.

Spherical Roller Bearings with tapered bore (K) require a slightly greater interference fit on the shaft than would a cylindrical bore bearing. The effect of this greater interference fit is a reduction of RIC. For tapered bore bearings, it is critical to select the RIC that allows for this reduction.

For example, bearing number 22328K C3 (140 mm bore with C3 clearance) is to be mounted on a tapered shaft. By feeler gauging, RIC is found to be 0.007" (0.178mm). The chart indicates that the proper fit will be obtained when RIC is reduced by 0.0025" to 0.0035" (0.064 to 0.089 mm). Clearance after mounting is computed: 0.007"-

0.003"= 0.004" (0.178-0.076=0.102mm). The locknut should be tightened until RIC reaches 0.004" (0.102mm).

Several factors influence RIC reduction. Inner rings pressed into solid steel shafts expand approximately 80% of the interference fit. Outer rings pressed into steel or cast iron housings reduce RIC by about 60%, of the interference fit. For RIC reduction on hollow shafts or non-steel materials consult Timken sales engineers.

Torrington bearings are supplied with NORMAL RIC, unless otherwise specified. The desired RIC code must be added to the bearing number, FOLLOWING ALL OTHER SUFFIXES.

Min./max. values for each RIC are shown in the two adjacent columns directly beneath the selected RIC. For example, the minimum values shown for C5 are also the maximum values for C4; minimum values for C4 are also the maximum values for C3; etc.

RADIAL INTERNAL CLEARANCE LIMITS

All data on this page, except Bore I.D. are in inches/millimeters

				Cylindrid	cal Bore			Tapered Bore								
Bo	ore		Nor	mal	С	4			Nor	mal	С	4		Recom	mended	Recommended
(nom	ninal)		(Stan	dard)					(Stan	dard)				Reductio	on of RIC	RIC after
			min.	max.	min.	max.			min.	max.	min.	max.		Due to In	stallation	Installation ⁽¹⁾
			C2		C3	0	C5		C2	C	3	C	5			
n	nm	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch
over	incl.	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
24	30	0.0006	0.0010	0.0016	0.0022	0.0030	0.0037	0.0008	0.0012	0.0016	0.0022	0.0030	0.0037	0.0006	0.0008	0.0006
		0.015	0.025	0.040	0.055	0.075	0.095	0.020	0.030	0.040	0.055	0.075	0.095	0.015	0.020	0.015
30	40	0.0006	0.0012	0.0018	0.0024	0.0031	0.0039	0.0010	0.0014	0.0020	0.0026	0.0033	0.0041	0.0008	0.0010	0.0006
		0.015	0.030	0.045	0.060	0.080	0.100	0.025	0.035	0.050	0.065	0.085	0.105	0.020	0.025	0.015
40	50	0.0008	0.0014	0.0022	0.0030	0.0039	0.0049	0.0012	0.0018	0.0024	0.0031	0.0039	0.0051	0.0010	0.0012	0.0008
		0.020	0.035	0.055	0.075	0.100	0.125	0.030	0.045	0.060	0.080	0.100	0.130	0.025	0.030	0.020
50	65	0.0008	0.0016	0.0026	0.0035	0.0047	0.0059	0.0016	0.0022	0.0030	0.0037	0.0047	0.0063	0.0012	0.0015	0.0010
		0.020	0.040	0.065	0.090	0.120	0.150	0.040	0.055	0.075	0.095	0.120	0.160	0.030	0.038	0.025
65	80	0.0012	0.0020	0.0031	0.0043	0.0057	0.0071	0.0020	0.0028	0.0037	0.0047	0.0059	0.0079	0.0015	0.0020	0.0010
		0.030	0.050	0.080	0.110	0.145	0.180	0.050	0.070	0.095	0.120	0.150	0.200	0.038	0.051	0.025
80	100	0.0014	0.0024	0.0039	0.0053	0.0071	0.0089	0.0022	0.0030	0.0043	0.0055	0.0071	0.0091	0.0018	0.0025	0.0014
		0.035	0.060	0.100	0.135	0.180	0.225	0.055	0.080	0.110	0.140	0.180	0.230	0.046	0.064	0.036
100	120	0.0016	0.0030	0.0047	0.0063	0.0083	0.0102	0.0026	0.0039	0.0053	0.0067	0.0087	0.0110	0.0020	0.0028	0.0020
		0.040	0.075	0.120	0.160	0.210	0.260	0.065	0.100	0.135	0.170	0.220	0.280	0.051	0.071	0.051
120	140	0.0020	0.0037	0.0057	0.0075	0.0094	0.0118	0.0031	0.0047	0.0063	0.0079	0.0102	0.0130	0.0025	0.0035	0.0022
		0.050	0.095	0.145	0.190	0.240	0.300	0.080	0.120	0.160	0.200	0.260	0.330	0.064	0.089	0.056
140	160	0.0024	0.0043	0.0067	0.0087	0.0110	0.0138	0.0035	0.0051	0.0071	0.0091	0.0118	0.0150	0.0030	0.0040	0.0022
		0.060	0.110	0.170	0.220	0.280	0.350	0.090	0.130	0.180	0.230	0.300	0.380	0.076	0.102	0.056
160	180	0.0026	0.0047	0.0071	0.0094	0.0122	0.0154	0.0039	0.0055	0.0079	0.0102	0.0134	0.0169	0.0030	0.0045	0.0024
		0.065	0.120	0.180	0.240	0.310	0.390	0.100	0.140	0.200	0.260	0.340	0.430	0.076	0.114	0.061
180	200	0.0028	0.0051	0.0079	0.0102	0.0134	0.0169	0.0043	0.0063	0.0087	0.0114	0.0146	0.0185	0.0035	0.0050	0.0028
		0.070	0.130	0.200	0.260	0.340	0.430	0.110	0.160	0.220	0.290	0.370	0.470	0.089	0.127	0.071
200	225	0.0031	0.0055	0.0087	0.0114	0.0150	0.0185	0.0047	0.0071	0.0098	0.0126	0.0161	0.0205	0.0040	0.0055	0.0030
		0.080	0.140	0.220	0.290	0.380	0.470	0.120	0.180	0.250	0.320	0.410	0.520	0.102	0.140	0.076
225	250	0.0035	0.0059	0.0094	0.0126	0.0165	0.0205	0.0055	0.0079	0.0106	0.0138	0.0177	0.0224	0.0045	0.0060	0.0035
		0.090	0.150	0.240	0.320	0.420	0.520	0.140	0.200	0.270	0.350	0.450	0.570	0.114	0.152	0.089
250	280	0.0039	0.0067	0.0102	0.0138	0.0181	0.0224	0.0059	0.0087	0.0118	0.0154	0.0193	0.0244	0.0045	0.0065	0.0040
		0.100	0.170	0.260	0.350	0.460	0.570	0.150	0.220	0.300	0.390	0.490	0.620	0.114	0.165	0.102
280	315	0.0043	0.0075	0.0110	0.0146	0.0197	0.0248	0.0067	0.0094	0.0130	0.0169	0.0213	0.0268	0.0050	0.0070	0.0040
		0.110	0.190	0.280	0.370	0.500	0.630	0.170	0.240	0.330	0.430	0.540	0.680	0.127	0.178	0.102
315	355	0.0047	0.0079	0.0122	0.0161	0.0217	0.0272	0.0075	0.0106	0.0142	0.0185	0.0232	0.0291	0.055	0.0075	0.0045
		0.120	0.200	0.310	0.410	0.550	0.690	0.190	0.270	0.360	0.470	0.590	0.740	0.140	0.190	0.114
355	400	0.0051	0.0087	0.0134	0.0177	0.0236	0.0295	0.0083	0.0118	0.0157	0.0205	0.0256	0.0323	0.0060	0.0080	0.0050
		0.130	0.220	0.340	0.450	0.600	0.750	0.210	0.300	0.400	0.520	0.650	0.820	0.152	0.203	0.127

⁽¹⁾For bearings with normal initial clearance

Continued on the next page

TORRINGTON RADIAL SPHERICAL ROLLER BEARINGS (continued)

Min./Max. values for each RIC are shown in the two adjacent columns directly beneath the selected RIC. Each single column represents a boundary between adjacent RIC's. For example, the minimum values shown for C5 are also the maximum values for C4; minimum values for C4 are also the maimum values for C3; etc.

	Cylindrical Bore						Tapered Bore									
Bo (nom	ore iinal)		Nor (Stan	mal dard)	с	4			Nor (Stan	rmal Idard)	, c	:4		Recomm Reductio	nended n of RIC	Recommended RIC after
			min.	max.	min.	max.			min.	max.	min.	max.		Due to Ins	stallation	Installation
			C2		C3		C5		C2 (3	C	5			
n	nm	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.
		inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch
over	incl.	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
400	450	0.0055	0.0094	0.0146	0.0197	0.0260	0.0323	0.0091	0.0130	0.0173	0.0224	0.0283	0.0358	0.0065	0.0085	0.0060
		0.140	0.240	0.370	0.500	0.660	0.820	0.230	0.330	0.440	0.570	0.720	0.910	0.165	0.216	0.152
450	500	0.0055	0.0102	0.0161	0.0217	0.0283	0.0354	0.0102	0.0146	0.0193	0.0248	0.0311	0.0394	0.0070	0.0090	0.0065
		0.140	0.260	0.410	0.550	0.720	0.900	0.260	0.370	0.490	0.630	0.790	1.000	0.178	0.229	0.165
500	560	0.0059	0.0110	0.0173	0.0236	0.0307	0.0394	0.0114	0.0161	0.0213	0.0268	0.0343	0.0433	0.0080	0.0100	0.0070
		0.150	0.280	0.440	0.600	0.780	1.000	0.290	0.410	0.540	0.680	0.870	1.100	0.203	0.254	0.178
560	630	0.0067	0.0122	0.0189	0.0256	0.0335	0.0433	0.0126	0.0181	0.0236	0.0299	0.0386	0.0484	0.0090	0.0110	0.0080
		0.170	0.310	0.480	0.650	0.850	1.100	0.320	0.460	0.600	0.760	0.980	1.230	0.229	0.279	0.203
630	710	0.0075	0.0138	0.0209	0.0276	0.0362	0.0469	0.0138	0.0201	0.0264	0.0335	0.0429	0.0535	0.0100	0.0120	0.0080
		0.190	0.350	0.530	0.700	0.920	1.190	0.350	0.510	0.670	0.850	1.090	1.360	0.254	0.305	0.203
710	800	0.0083	0.0154	0.0228	0.0303	0.0398	0.0512	0.0154	0.0224	0.0295	0.0378	0.0480	0.0591	0.0110	0.0140	0.0090
		0.210	0.390	0.580	0.770	1.010	1.300	0.390	0.570	0.750	0.960	1.220	1.500	0.279	0.356	0.229
800	900	0.0091	0.0169	0.0256	0.0339	0.0441	0.0567	0.0173	0.0252	0.0331	0.0421	0.0539	0.0665	0.0120	0.0150	0.0100
		0.230	0.430	0.650	0.860	1.120	1.440	0.440	0.640	0.840	1.070	1.370	1.690	0.305	0.381	0.252
900	1000	0.0102	0.0189	0.0280	0.0366	0.0480	0.0618	0.0193	0.0280	0.0366	0.0469	0.0598	0.0732	0.0140	0.0170	0.0110
		0.260	0.480	0.710	0.930	1.220	1.57	0.490	0.710	0.930	1.190	1.520	1.860	0.356	0.432	0.279

⁽¹⁾For bearings with normal initial clearance

RADIAL CYLINDRICAL ROLLER BEARINGS

Min./Max. values for each RIC are shown in the two adjacent columns directly beneath the selected RIC. Each single column represents a boundary between adjacent RIC's. For example, the minimum values shown for R5 are also the maximum values for R4; minimum values for R4 are also the maimum values for R3; etc. The desired RIC code (R1, R2, etc.) must be added to the bearing number, FOLLOWING ALL OTHER SUFFIXES.

RADIAL INTERNAL CLEARANCE LIMITS

All data on this chart are in inches/millimeters.

Bo	ore		F	R2	F	₹4		-	Вс	ore		F	R2	R	4	
(nom	ninal)		min.	max.	min.	max			(nom	ninal)		min.	max.	min.	max	
		R	1	F	23	F	₹5				R1			R3	R5	
Over	Incl.	min.	max.	min.	max.	min.	max.	_	Over	Incl.	min.	max.	min.	max.	min.	max.
in.	in.	in.	in.	in	in.	in.	in.		in.	in.	in.	in.	in	in.	in.	in.
mm	mm	<mark>mm</mark>	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm
3.1496	3.9370	0.0005	0.0016	0.0032	0.0051	0.0077	0.0107	_	11.8110	13.7795	0.0032	0.0050	0.0078	0.0110	0.0148	0.0190
<mark>80</mark>	100	0.013	0.041	0.081	0.130	0.196	0.272		300	<mark>350</mark>	0.081	0.127	0.198	0.279	0.376	0.483
3.9370	4.7244	0.0005	0.0018	0.0036	0.0060	0.0089	0.0122		13.7795	15.7480	0.0042	0.0065	0.0093	0.0125	0.0163	0.0205
100	120	0.013	0.046	0.091	0.152	0.226	0.310		<mark>350</mark>	<mark>400</mark>	0.107	0.165	0.236	0.318	<mark>0.414</mark>	0.521
4.7244	5.5118	0.0009	0.0022	0.0041	0.0067	0.0101	0.0139		15.7480	17.7165	0.0055	0.0080	0.0110	0.0142	0.0180	0.0222
120	140	0.023	0.056	0.104	0.170	0.256	<mark>0.353</mark>		400	450	0.14	0.203	0.279	<mark>0.361</mark>	0.457	<mark>0.564</mark>
5.5118	6.2992	0.0010	0.0026	0.0049	0.0077	0.0112	0.0151	-	17.7165	19.6850	0.0060	0.0085	0.0115	0.0150	0.0200	0.0254
140	160	0.025	0.066	0.124	0.196	0.284	0.384		450	500	0.152	0.216	0.292	0.381	0.508	0.645
6.2992	7.0866	0.0011	0.0027	0.0052	0.0082	0.0118	0.0158	-	19.6850	22.0472	0.0065	0.0090	0.0120	0.0160	0.0210	0.0264
160	180	0.028	0.069	0.132	0.208	0.300	0.401		500	560	0.165	0.229	0.305	0.406	0.533	0.671
7.0866	7.8740	0.0014	0.0032	0.0060	0.0092	0.0130	0.0172	-	22.0472	24.8031	0.0070	0.0100	0.0140	0.0190	0.0240	0.0294
180	200	0.036	0.081	0.152	0.234	0.330	0.437		560	630	0.178	0.254	0.356	0.483	0.610	0.747
7.8740	8.6614	0.0016	0.0034	0.0062	0.0094	0.0132	0.0174	-	24.8031	27.9528	0.0075	0.0110	0.0150	0.0200	0.0250	0.0304
200	220	0.041	0.086	0.157	0.239	0.335	0.4420		630	710	0.190	0.279	0.381	0.508	0.635	0.772
8.6614	10.2362	0.0022	0.0040	0.0068	0.0100	0.0138	0.018	-	27.9528	31.4961	0.0085	0.0130	0.0180	0.0230	0.0280	0.0334
220	260	0.056	0.102	0.173	0.254	0.351	0.455		710	800	0.216	0.330	0.457	0.584	0.711	0.848
10.2362 260	11.8110 300	0.0024 0.061	0.0042 0.107	0.0070 0.178	0.0102 0.259	0.0140 0.356	0.0182 0.462	-			-					

TORRINGTON RADIAL TAPERED ROLLER BEARINGS – TWO ROW

In two row tapered roller bearings, Internal Clearance is usually defined as Lateral Clearance (L_c) or end play, which is related to Radial Internal Clearance (RIC) by the formula:

$$L_{\rm C} = \frac{\rm RIC \ X \ K}{0.39}$$

K being a thrust factor which is different for every bearing and is included in the table of dimensions.

 $L_{\rm C}$ is determined by the relative axial position of cup and cone, and is a function of spacer width in the two element member (cup or cone). In the illustration, the cups shown in black are positioned for zero RIC, allowing no end play. The cups shown in green provide lateral clearance equal to (B-A).

The desired L_c must be specified by adding designation codes G1, G2, etc. to the bearing number, FOLLOWING ALL OTHER SUFFIXES.

Bo	ore		N	lominal Clearance (L _c) Tolerance: ±0.001 inch (±0.025 mm)						
Over	Incl.	G1	G2	G3	G4	G5	G6	G7	G8	G9
in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
7.5000	12.0000	0.006	0.009	0.018	0.021	0.024	0.027	0.030	0.033	0.036
190.500	304.800	0.15	0.23	0.46	<mark>0.53</mark>	<mark>0.61</mark>	<mark>0.69</mark>	0.76	0.84	0.91
12.0000	24.0000	0.007	0.018	0.021	0.024	0.027	0.030	0.034	0.040	0.046
304.800	609.600	0.18	0.46	0.53	<mark>0.61</mark>	<mark>0.69</mark>	0.76	0.86	1.02	1.17
24.0000	36.0000	0.019	0.023	0.027	0.031	0.035	0.039	0.042	0.046	0.050
609.600	914.400	0.48	0.58	0.69	0.79	<mark>0.89</mark>	<mark>0.99</mark>	1.07	1.17	1.27

INSTALLATION PROCEDURES

A drawn cup bearing must be pressed into its housing. An installation tool similar to the one illustrated must be used in conjunction with a standard press.

It is advisable to utilize a positive stop on the press tool to locate the bearing properly in the housing. The assembly tool should have a leader or pilot, as shown, to aid in starting the bearing true in the housing.

The installation tool must be coaxial with the housing bore. The ball detent shown on the drawing is used to assist in aligning the rollers of a full complement bearing during installation and to hold the bearing on the installation tool.

Assemble the bearing with the marked end (the end with identification markings) against the angled shoulder of the pressing tool.

Never hammer the bearing into its housing even in conjunction with the proper assembly mandrel.

Never press the bearing tightly against a shoulder in the housing. If it is necessary to use a shouldered housing, the depth of the housing bore must be sufficient to ensure the housing shoulder fillet, as well as the shoulder face, clears the bearing.

To remove a drawn cup bearing from a through-bored housing, use a tool similar to the installation tool illustrated, but without the stop. For suggested methods of removing bearings from blind and shouldered bores, consult your Timken sales associate.

- A- 1/64" (0.4 mm) less than housing bore
- B- .003" (0.08 mm) less than shaft diameter
- C- distance bearing will be inset into housing, minimum of .008" (0.2 mm)
- **D** pilot length should be length of bearing less ¹/₃₂" (0.8 mm)
- E- approximately 1/2 D

HOW TO INSPECT A BEARING JOURNAL OR HOUSING BORE

A twelve-point inspection is recommended to properly inspect a bearing journal or housing bore. Verification of mating component geometry is achieved by comparing the inspection measurements to the recommended (mating component) tolerance limits. Shaft and housing limits are selected using specific application criteria. Tables of these limits are published in The Timken Service Catalog, order no. 5731.

Diameter (size), roundness and taper (form) can be confirmed after the twelve measurements are recorded.

THE TWELVE-POINT MEASUREMENT PROCEDURE:

- Use two-point gauges that are accurate to .0001". It is recommended that gauges with accuracy to ¹/₁₀ of the units that are being inspected to be used (resolution to .00001"). We recognize readily available gauges read to .0001", however.
- 2) Measure four position at 0°, 45°, 90°, and 135° in three different planes of the mating surface (that is in direct contact with the bearing). The three planes should be evenly spaced across the contact area. The outboard measurements should be ¼" to ½" in from each end.
- Record the measurements on a chart like the one listed below. Keep all three sets of measurements oriented with respect to each other. Take an average of each plane.

0°

45°

DIAMETER (SIZE) EVALUATION:

PLANE A

PLANE B

PLANE C

Compare the average diameter measurement (A, B, C) to the recommended tolerance limits. Each average diameter should be within the recommended limits. The mating component diameter is out of specification if any average is over or under the recommended limits.

ROUNDNESS (FORM) EVALUATION:

Compare the individual measurements in a lane to each other. The maximum permissible deviation of these measurements is one-half ($\frac{1}{2}$) of the recommended limit. An out-of-round condition exists if differences greater than one-half ($\frac{1}{2}$) of the limit are found.

HOW TO INSPECT A JOURNAL OR BORE

TWELVE POINT MEASUREMENT WORKSHEET

Application:		Machine:				
Comments:						
Shaft Tolerances Required:	Max:	Min:		½ Limit:		
Housing Tolerances Required:	Max:	Min:		1/2 Limit:		

MEASUREMENTS (gauges accurate to .0001" minimum is recommended)

	0 °	45 °	90 °	135°	AVERAGES
PLANE A					A =
PLANE B					B =
PLANE C					C =

DIAMETER (SIZE) EVALUATION:

Compare the average diameter measurement (A, B, C) to the recommended tolerance limits. Each average diameter should be within the recommended limits. The mating component diameter is out of specification if any average is over or under the recommended limits.

ROUNDNESS (FORM) EVALUATION:

Compare the individual measurements in a plane to each other. The maximum permissible deviation of these measurements is one-half ($\frac{1}{2}$) of the recommended limit. An out-of-round condition exists if differences greater than one-half ($\frac{1}{2}$) of the limit are found.

TAPER (FORM) EVALUATION:

Taper is determined by taking the difference between the plane averages as follows:

Excessive taper exists if the resultant differences exceed one-half (½) of the specified tolerance range.

SURFACE FINISH REFERENCE:

- Common surface finishes required for shafts are:
 - \leq 2" diameter = 32rms Micro Finish maximum
 - > 2" diameter = 63rms Micro Finish maximum
- Common surface finishes required for housings are: Stationary outer ring required to float = 63rms maximum Stationary outer ring **not** required to float = 125rms maximum

EXAMPLE:

A 22324YMW33W800C4 "shaker screen" bearing housing inspection. This application requires a "P6" housing tolerance limit. The "P6" housing diameters are 10.2331"/ 10.2343".

Size is verified when the housing "plane" average diameters are between 10.2331" and 10.2343".

Roundness and taper inspections require that one-half (½) of the permissible tolerance limits be calculated. Thus,

10.2343"			<u>.0012"</u> =	= .0006"
<u>-10.2331"</u>		AND	2	
.0012"	maximum limit			

Roundness is verified by comparing the differences of the four measurements of a given plane. **No** difference should exceed .0006".

Taper is verified by comparing the differences of the three **averages.** No difference should exceed .0006".

CONCLUDING COMMENTS:

Precision ground anti-friction, rolling element bearings are extremely precise and refined industrial products. Their performance and life can be greatly enhanced by the following:

- The working environment must be clean during installation.
- Accepted care, handling techniques, and tools and fixtures must be employed during removal and installation of bearings during repair.
- Mating component geometry and material should meet industry standards as published in The Timken Service Catalog.
- · Common surface finishes required for shafts are:
 - \leq 2" diameter = 32rms Micro Finish maximum
 - > 2" diameter = 63rms Micro Finish maximum
- Common surface finishes required for housings are: Stationary outer ring required to float = 63rms maximum Stationary outer ring **not** required to float = 125rms maximum

SHAFT AND HOUSING FITS

RADIAL BALL, SPHERICAL, CYLINDRICAL ROLLER BEARINGS

Below is a graphical representation of shaft and housing fit selection for these bearings conforming to ANSI/ABMA Standard 7. The bars designated by g6, h6 etc. represent shaft/housing diameter and tolerance ranges to achieve various loose and interference fits required for various load and ring rotation conditions.

RADIAL BALL, SPHERICAL AND CYLINDRICAL ROLLER BEARINGS

Tolerance and shaft diameters shown as variance from nominal bearing bore, using the symbols in the graph. All data except nominal dimensions are in ten-thousands of an inch ($5 = 0.0005^{\circ}$) and thousandths of a millimeter or micrometer (5 = 0.005mm).

See pages 26 through 31 for actual shaft and housing diameters for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

SHAFT

Bearing Bore			g6			h6			h5			j5			j6			k5			k6			m5	
Nominal	Tol.	Shaf	t Dia.		Shaf	t Dia.		Shaft	Dia.		Shaft	Dia.		Shaft	Dia.		Shaft	Dia.		Shaft	Dia.		Shat	t Dia.	
(max.) Over Incl.	+0 To	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max	min.	Fit
	in	in	in	in	in	in	in	in	in	in	in	in	in	in	in	in	in	in	l in	in	in	in	in	in	l in
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
	-			EI			21			21			11			11			OT						эт
	-3	-2	-5	JL 1T	0	-3	3T	0	-2	3T	+1	-1	4T	+2	-1	5T		. 0	5T				+4	+2	21 7T
3 6				12L			8L		_	5L			2L			2L	+2	+0	1T						4T
	-8	-4	-12	4T	0	-8	8T	0	-5	8T	+3	-2	11T	+6	-2	14T	+6	+1	14T				+9	+4	17T
				6L			4L			2L			1L			1L			0T				_		2T
6 10	-3	-2	-6	1T	0	-4	3T	0	-2	3T	+2	-1	5T	+3	-1	6T	+3	+0	6T				+5	+2	8T
0 10	-8	-5	-14	14L	0	-9	9L	0	-6	<mark>6</mark> L	+4	-2	2L	+7	-2	2L			1T				+12	+6	6T
				3T			8T			8T			12T			15T	+7	+1	15T						20T
	-3	-2	-7	7L	0	-4	4L	0	-3	3L	+2	-1	1L	+3	-1	1L			OT				+6	+3	3T
10 18				11			31			31			5 I 21			6 I 21	+4	+0	/ 1T						91 7T
	-8	-6	-17	2T	0	-11	8T	0	-8	8T	+5	-3	13T	+8	-3	16T	+9	+1	17T				+15	+7	23T
	-			01			51			-			21			21			1T						2Т
	-4	-3	-8	1T	0	-5	4T				+2	-2	6T	+4	-2	8T	+4	+1	8T				+7	+3	11T
18 30	-10	-7	-20	20L	0	-13	13L				45	-1	4L	10	-1	4L	+11	+2	2T				+17	18	8T
	-10	-/	-20	3T	Ŭ	-15	10T				+5	-4	15T	+7	-4	19T		τZ	21T				T17	ŦŪ	27T
	-4 5	-4	-10	10L	0	-6	6L				+2	-2	2L	+4	-2	2L	+5	+1	1T	+7	+1	1T	+8	+4	4T
30 50	4.5		10	0.5T		0	4.5T				12	2	6.5T	1.1	2	8.5T			9.5T			11.5T		14	12.5T
	-12	-9	-25	25L 2T	0	-16	16L 12T				+6	-5	5L 10T	+11	-5	5L 22T	+13	+2	2T 25T	+18	+2	2T 20T	+20	+9	9T 22T
	+			31			121						101			231			201			301			321
	-6	-4	-11	11L 2T	0	-7	/L 6T				+2	-3	3L ST	+5	-3	3L 11T	+6	+1	11 12T	+8	+1	11 14T	+9	+4	41 15T
50 80				29L			19L					_	7L		_	7L			2T			2T			11T
	-15	-10	-29	5T	0	-19	15T				+6	-7	21T	+12	-7	27T	+15	+2	30T	+21	+2	36T	+24	+11	39T
			10	13L			9L						4L	_		4L	_		1T	4.0		1T		-	5T
80 120	-8	-5	-13	3T	0	-9	8T				+2	-4	10T	+5	-4	13T	+/	+1	15T	+10	+1	18T	+11	+5	19T
00 120	-20	-12	-34	34L	0	-22	22L				+6	-9	9L	+13	-9	9L	+18	+3	3T	+25	+3	3T	+28	+13	13T
		-		81			201						261			331			381			451			481
	-10	-6	-15	15L	0	-10	10L				+3	-4	4L	+6	-4	4L	+8	+1	1T	+11	+1	1T	+13	+6	6T
120 180				4 I 30I			101 251						131			161			181 3T			211 3T			231 15T
	-25	-14	-39	11T	0	-25	25T				+7	-11	32T	+14	-11	39T	+21	+3	46T	+28	+3	53T	+33	+15	58T
-				171			111						51			51			2T						7T
100 200	-12	-6	-17	6T	0	-11	12T				+3	-5	15T	+6	-5	18T	+9	+2	21T				+15	+7	27T
180 200	-30	-15	-44	44L	0	-29	29L				+7	-13	13L	+16	-13	13L	+24	+4	4T				+37	+17	17T
		-		15T			30T						37T			46T			54T						67T
	-12	-6	-17	17L	0	-11	11L				+3	-5	5L	+6	-5	5L	+9	+2	2T				+15	+7	7T
200 225				6T			12T						15T			18T			21T						27T
	-30	-15	-44	44L 15T	0	-29	29L 30T				+7	-13	37T	+16	-13	46T	+24	+4	41 54T				+37	+17	67T
	-			171			111						51			51			ЭТ						7T
005 050	-12	-6	-17	6T	0	-11	12T				+3	-5	15T	+6	-5	18T	+9	+2	21 21T				+15	+7	27T
225 250	20	15	4.4	44L	0	20	29L				.7	12	13L			13L	124	. 4	4T				.27	.17	17T
	-30	-15	-44	15T	Ŭ	-27	30T				τ/	-13	37T	+16	-13	46T	724	M	54T				+37	±17	67T
	-14	_7	_10	19L	0	-13	13L				+3	-6	6L			6L	+11	+2	2T				+17	+8	8T
250 280		- /	. /	7T		15	14T					-0	17T	+6	-6	20T		. 2	25T				` <i>`</i>	.0	31T
	-35	-17	-49	49L 19T	0	-32	32L 35T				+7	-16	16L 42T	+16	_16	16L	+27	+4	4T 62T				+43	+20	20T
	+			101			101						721	TIU	-10				021						.01
	-14	-7	-19	19L 7T	0	-13	13L 14T				+3	-6	6L 17T	+6	-6	6L 20T	+11	+2	21 25T				+17	+8	81 31T
280 315			10	49L			32L				_		16L	1	-0	16L	07		4T					~~	20T
	-35	-17	-49	18T	U	-32	35T				+/	-16	42T	+16	-16	51T	+27	+4	62T				+43	+20	78T

The tolerances in this table are in conformance with ANSI/ABMA Standard 7-1988

RADIAL BALL, SPHERICAL AND CYLINDRICAL ROLLER BEARINGS

Tolerance and shaft diameters shown as variance from nominal bearing bore, using the symbols in the graph. All data except nominal dimensions are in ten-thousands of an inch ($5 = 0.0005^{\circ}$) and thousandths of a millimeter or micrometer (5 = 0.005mm).

See pages 26 through 31 for actual shaft and housing diameters for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

SHAFT

В	earing Bore			m6			n6			р6			r6			r7	
Nom	inal	Tol.	Shaft	Dia.		Shaft	Dia.		Shaft	Dia.		Shaft	Dia.		Shaft	Dia.	
(ma Over	Incl.	+ 0 To	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	- Fit	max.	min.	- Fit
		in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
mr	m	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
		-3															
3	6	-8															
	10	-3															
6	10	-8															
		-3															
10	18																
		-8															
		-4															
18	30																
		-10															
					4T												
30	50	-5	+10	+4	14.5T												
50	50	-12	+25	+9	9T												
					371			07									
		-6	+12	+4	41 18T	+15	+8	81 21T									
50	80	15	120	.11	11T	120	.20	20T									
		-15	+30	TII	45T	+37	+20	54T									
		-8	+14	+5	5T	+18	+9	9T	+23	+15	15T						
80	120				221 13T			261 23T			311 37T						
		-20	+35	+13	55T	+45	+23	65T	+59	+37	79T						
		10	. 14	. 4	6T	. 20	. 11	11T	. 27	. 17	17T	. 25	. 24	26T			
120	180	-10	+10	ŦŪ	26T	+20	ŦĦ	30T	+27	+17	37T	+35	720	45T			
		-25	+40	+15	151 65T	+52	+27	271 77T	+68	+43	431 93T	+90	+65	651 115T			
					7T			12T			20T			30T			
180	200	-12	+18	+7	30T	+24	+12	36T	+31	+20	43T	+42	+30	54T			
100	200	-30	+46	+17	17T	+60	+31	31T	+79	+50	50T	+106	+77	77T			
					/61			901			1091			1301			
		-12	+18	+7	71 30T	+24	+12	121 36T	+31	+20	201 43T	+43	+31	31 I 55 T	+50	+31	311 62T
200	225	-30	+16	±17	17T	+60	+31	31T	+70	+50	50T	+109	+80	80T	+126	+80	80T
		-50	++0	±17	76T	+00	+51	90T	*//	+30	109T	+107	+00	139T	+120	+00	156T
		-12	+18	+7	7T	+24	+12	12T	+31	+20	20T	+44	+33	33T	+51	+33	33T
225	250				30T 17T			36T 31T			43T 50T			56T 84T			63T 84T
		-30	+46	+17	76T	+60	+31	90T	+79	+50	109T	+113	+84	143T	+130	+84	160T
					8T		40	13T	0.5		22T	50		37T		07	37T
250	280	-14	+20	+8	34T	+26	+13	40T	+35	+22	49T	+50	+37	64T	+57	+37	71T
		-35	+52	+20	20T	+66	+34	34T	+88	+56	56T 122T	+126	+94	94T	+146	+94	94T
					071			127			12J1			201			207
	215	-14	+20	+8	34T	+26	+13	40T	+35	+22	221 49T	+51	+39	65T	+59	+39	591 73T
280	315	-35	+52	+20	20T	+66	+34	34T	+88	+56	56T	+130	+98	98T	+150	+98	98T
					87T			101T			123T			165T			185T

The tolerances in this table are in conformance with ANSI/ABMA Standard 7-1988

Continued on the next page

RADIAL BALL, SPHERICAL AND CYLINDRICAL ROLLER BEARINGS (continued)

Tolerance and shaft diameters shown as variance from nominal bearing bore, using the symbols in the graph. All data except nominal dimensions are in ten-thousands of an inch ($5 = 0.0005^{\circ}$) and thousandths of a millimeter or micrometer (5 = 0.005mm).

See pages 26 through 31 for actual shaft and housing diameters

for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

SHAFT

	Bearing Bo	re		g6			h6			h5			j5			j6			k5			k6			m5	
N	lominal	Tol.	Shaf	t Dia.		Shaf	t Dia.	_	Shaf	t Dia.	_	Shaf	t Dia.	_	Shat	ft Dia.		Shaf	Dia.	_	Shaf	t Dia.	_	Shaf	t Dia.	_
Over	(max.) Incl.	To	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit
		in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
		-16	-7	-21	21L	0	-14	14L				+3	-7	7L	+7	-7	7L	+11	+2	2T				+18	+8	8T
315	355				91 54L			36L						191 18L			231 18L			271 4T						341 21T
		-40	-18	-54	22T	0	-36	40T				+7	-18	47T	+18	-18	58T	+29	+46	9T				+46	+21	86T
		-16	-7	-21	21L	0	-14	14L				+3	-7	7L	+7	-7	7L	±11	+2	2T				±18	+8	8T
355	400	10		21	9T		14	16T					,	19T		,	23T		12	27T					10	34T
		-40	-18	-54	22T	0	-36	40T				+7	-18	47T	+18	-18	58T	+29	+4	69T				+46	+21	86T
		10		24	24L		1/	16L				2	0	8L		0	8L	10	2	2T				20	0	9T
400	450	-18	-8	-24	10T	0	-16	18T				+3	-8	21T	+8	-8	26T	+13	+2	31T				+20	+9	38T
		-45	-20	-60	60L 25T	0	-40	40L 45T				+7	-20	20L 52T	+20	-20	20L 65T	+32	5	5T 77T				+50	+23	23T 95T
					24L			16L						8L			8L			2T						9T
450	500	-18	-8	-24	10T	0	-16	18T				+3	-8	21T	+8	-8	26T	+13	2	31T				+20	+9	38T
		-45	-20	-60	60L 25T	0	-40	40L				+7	-20	20L	+20	-20	20L	+32	5	5T 77T				+50	+23	23T
					261			171						01			001			OT						10T
500	E40	-20	-9	-26	20L 11T	0	-17	20T				+3	-9	23T	+9	-9	29T	+12	0	32T				+22	+10	42T
		-50	-22	-66	66L	0	-44	44L				+8	-22	22L	+22	-22	22L	+30	0	0T				+56	+26	26T
					281			501						581			/21	10		801						1061
570	(00	-20	-9	-26	26L 11T	0	-17	17L 20T				+3	-9	9L 23T	+9	-9	9L 29T	+12	0	01 32T				+22	+10	101 42T
560	630	-50	-22	-66	66L	0	-44	44L				+8	-22	22L	+22	-22	22L	+30	0	OT				+56	+26	26T
					28T			50T						58T			72T			80T					.20	106T
		-30	-9	-29	29L 21T	0	-20	20L 30T				+4	-10	10L 34T	+10	-10	10L 40T	+14	0	0T 44T				+26	+12	12T 56T
630	710	75	24	74	74L		50	50L				.10	25	25L	. 25	25	25L	. 25	0	OT					. 20	30T
		-75	-24	-74	51T	0	-30	75T				+10	-20	85T	+20	-20	100T	+50	0	110T				+00	+30	140T
		-30	-9	-29	29L	0	-20	20L				+4	-10	10L	+10	-10	10L	+14	0	0T				+26	+12	12T
710	800				211 74L			301 50L						341 25L			401 25L			441 0T						30T
		-75	-24	- / 4	51T	0	-50	75T				+10	-25	85T	+25	-25	100T	+35	0	110T				+65	+30	140T
		-39	-10	-32	32L	0	-22	22L				+5	-11	11L	+11	-11	11L	+16	0	0T				+29	+13	13T
800	900				29T 821			39T 56I						44T 28I			50T 28I			55T 0T						68T 34T
		-100	-26	-82	74T	0	-56	100T				+12	-28	112T	+28	-28	128T	+40	0	140T				+74	+34	174T
		-30	-10	-33	32L	0	-22	22L				+5	-11	11L	+11	-11	11L	+16	0	0T				+20	±13	13T
900	1000	-37	-10	-52	29T		-22	39T				+5	-11	44T	*11	-11	50T		0	55T				12/	+15	68T
		-100	-26	-82	02L 74T	0	-56	100T				+12	-28	20L 112T	+28	-28	20L 128T	+40	0	140T				+74	+34	174T
		10	11	27	37L		24	26L				-	10	13L	. 10	10	13L	. 10	~	0T				. 24	. 47	16T
1000	1120	-49	-11	-37	38T	0	-26	49T				+5	-13	54T	+13	-13	62T	+18	U	67T				+34	+16	83T
		-125	-28	-94	94L 97T	0	-66	66L 125T				+13	-33	33L 138T	+33	-33	33L 158T	+46	0	01 171T				+86	+40	401 211T
					37L			26L						13L			13L			0T						16T
1120	1250	-49	-11	-37	38T	0	-26	49T				+5	-13	54T	+13	-13	62T	+18	0	67T				+34	+16	83T
		-125	-28	-94	94L 97T	0	-66	66L 125T				+13	-33	33L 138T	+33	-33	33L 158T	+46	0	0T 171T				+86	+40	40T 211T

The tolerances in this table are in conformation with ANSI/ABMA Standard 7-1988

RADIAL BALL, SPHERICAL AND CYLINDRICAL **ROLLER BEARINGS** (continued)

SHAFT

Tolerance and shaft diameters shown as variance from nominal bearing bore, using the symbols in the graph. All data except nominal dimensions are in ten-thousands of an inch (5 = 0.0005") and thousandths of a millimeter or micrometer (5 = 0.005mm).

See pages 26 through 31 for actual shaft and housing diameters

for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

Bea	aring Bore			m6			n6			р6			r6			r7	
Nomin	al	Tol.	Shaft	Dia.		Shaft	Dia.	_	Shaft	Dia.	_	Shaft	Dia.	_	Shaft	Dia.	
Over	.) Incl.	To	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit
		in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
mm	ı	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
		16	. 22	. 0	8T	. 20	15	15T	.20	1.24	24T	.57	. 12	43T	. 45	12	43T
315	355	-10	TZZ	ŦŬ	38T	+27	+15	45T	+37	724	55T	+37	+40	73T	+03	143	81T
		-40	+57	+21	21T 07T	+73	+37	37T 113T	+98	+62	62T 138T	+144	+108	108T 184T	+165	+108	108T 205T
					7/1			157			247			457			457
		-16				+29	+15	45T	+39	+24	241 55T	+59	+45	451 75T	+67	+45	431 83T
355	400	-40				+73	+37	37T	108	+62	62T	+150	+11/	114T	+171	+11/	114T
		-40				+73	+37	113T	+70	+02	138T	+150	1114	190T	- T 1 / 1	7114	211T
		-18				+31	+16	16T	+43	+27	27T	+65	+50	50T	+74	+50	50T
400	450							49T			61T			83T 126T			92T 126T
		-45				+80	+40	125T	+108	+68	153T	+166	+126	211T	+189	+126	234T
		10						16T	10	07	27T		50	52T		50	52T
450	500	-18				+31	+16	49T	+43	+27	61T	+68	+52	86T	+//	+52	95T
		-45				+80	+40	40T	+108	+68	68T	+172	+132	132T	+195	+132	132T
								1201			217			21/1			2401
		-20							+48	+31	311 68T	+76	+59	591 96T	+87	+59	591 107T
500	560	50							122	. 70	78T	104	150	150T	1220	150	150T
		-50							TIZZ	+70	172T	+174	+150	244T	7220	+150	270T
		-20							+48	+31	31T	+78	+61	61T	+89	+61	61T
560	630										681 78T			981 155T			1091 155T
		-50							+122	+78	172T	+199	+155	249T	+225	+155	275T
		20							. 54	. 25	35T	. 00	. 40	69T	.100	. 40	69T
630	710	-30							+34	+35	84T	+07	+07	119T	+100	+07	130T
		-75							+138	+88	881 213T	+225	+175	1751 300T	+255	+175	1751 330T
											35T			73T			73T
710	800	-30							+54	+35	84T	+93	+73	123T	+104	+73	134T
710	800	75							+138	+88	88T	+235	+185	185T	+265	+185	185T
											2131			3101			3401
		-39							+61	+39	39T	+105	+83	83T	+118	+83	83T
800	900										100T			210T			210T
		-100							156	+100	256T	+266	+210	366T	+300	+210	400T
		-30							+61	+30	39T	+109	+87	87T	+122	+87	87T
900	1000	57								107	100T	1107	107	148T	1122	107	161T
		-100							+156	+100	256T	+276	+220	376T	+310	+220	410T
											47T			98T			98T
1000	1120	-49							+73	+47	122T	+124	+98	173T	+140	+98	189T
		-125							+186	+120	120T	+316	+250	250T	+355	+250	250T
											3111			4411			4801
		-49							+73	+47	471 122T	+128	+102	1021 177T	+144	+102	1021 193T
1120	1250								104	120	120T	1224	1260	260T	1245	1260	260T
		-125							+190	+120	311T	+320	+∠0U	451T	+305	+20U	490T

The tolerances in this table are in conformance with ANSI/ABMA Standard 7-1988.

RADIAL BALL, SPHERICAL AND CYLINDRICAL ROLLER BEARINGS

Tolerance and housing bore shown as variance from nominal bearing O.D. All data except nominal dimensions are in ten-thousands of an inch (5 = 0.0005") and thousandths of a millimeter or micrometer (5 = 0.005mm).

See pages 26 through 31 for actual shaft and housing diameters

for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

В	earing O	.D.		F7			G7			H8			H7			H6			J6			J7			K6			K7	
Non	ninal	Tol.	Hou B	using ore	_	Hou B	using ore	_	Hou Bo	ising ore		Hou B	ising ore		Hou Bo	sing ore		Hou Bo	sing ore		Hou Bo	sing ore		Hou Bo	sing ore	_	Hou Bo	sing ore	
(ma Over	ax.) Incl.	+0 To	min.	max	Fit	min.	. max	Fit	min.	max	Fit	min.	max	Fit	min.	max	Fit	min.	max	Fit	min.	max	Fit	min.	max	Fit	min.	max	Fit
r	nm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm
10	10	-3	+6	+13	6L 16L	+2	+9	2L 12L	0	+11	0L 14L	0	+7	0L 10L	0	+4	0L 7L	-2	+2	2T 5L	-3	+4	3T 7L	-4	+1	4L 4T	-5	+2	5T 5L
10	18	-8	+16	+34	16L 42L	+6	+24	6L 32L	0	+27	0L 35L	0	+18	0L 26L	0	+11	0L 19L	-5	+6	5T 14L	-8	+10	8T 18L	-9	+2	9T 10L	-12	+6	12T 14L
10	20	-3.5	+8	+16	8L 19.5L	+3	+11	3L 14.5L	0	+13	0L 16.5L	0	+8	0L 11.5L	0	+5	0L 8.5L	-2	+3	2T 6.5L	-4	+5	4T 8.5L	-4	+1	4T 4.5L	-6	+2	6T 5.5L
10	30	-9	+20	+41	20L 50L	+7	+28	7L 37L	0	+33	0L 42L	0	+21	0L 30L	0	+13	0L 22L	-5	+8	5T 17L	-9	+12	9T 21L	-11	+2	11T 11L	-15	+6	15T 15L
30	50	-4.5	+10	+20	10L 24.5L	+4	+13	4L 17.5L	0	+15	0L 19.5L	0	+10	0L 14.5L	0	+6	0L 10.5L	-2	+4	2T 8.5L	-4	+6	4T 10.5L	-5	+1	5T 5.5L	-7	+3	7T 7.5L
	50	-11	+25	+50	25L 61L	+9	+34	9L 45L	0	+39	0L 50L	0	+25	0L 36L	0	+16	0L 27L	-6	+10	6T 21L	-11	+14	11T 25L	-13	+3	13T 14L	-18	+7	18T 18L
50	80	-5	+12	+24	12L 29L	+4	+16	4L 21L	0	+18	0L 23L	0	+12	0L 17L	0	+7	0L 12L	-2	+5	2T 10L	-5	+7	5T 12L	-6	+2	6T 7L	-8	+4	8T 9L
		-13	+30	+60	30L 73L	+10	+40	10L 53L	0	+46	0L 59L	0	+30	0L 43L	0	+19	0L 32L	-6	+13	6T 26L	-12	+18	12T 31L	-15	+4	15T 17L	-21	+9	21T 22L
80	120	-6	+14	+28	14L 34L	+5	+19	5L 25L	0	+21	0L 27L	0	+14	0L 20L	0	+9	0L 15L	-2	+6	2T 12L	-5	+9	5T 15L	-7	+2	7T 8L	-10	+4	10T 10L
	120	-15	+36	+71	36L 86L	+12	+47	12L 62L	0	+54	0L 69L	0	+35	0L 50L	0	+22	0L 37L	-6	+16	6T 31L	-13	+22	13T 37L	-18	+4	18T 19L	-25	+10	25T 25L
120	150	-7	+17	+33	17L 40L	+6	+21	6L 28L	0	+25	0L 32L	0	+16	0L 23L	0	+10	0L 17L	-3	+7	3T 14L	-6	+10	6T 17L	-8	+2	8T 9L	-11	+5	11T 12L
		-18	+43	+83	43L 101L	+14	+54	14L 72L	0	+63	0L 81L	0	+40	0L 58L	0	+25	0L 43L	-7	+18	7T 36L	-14	+26	14T 44L	-21	+4	21T 22L	-28	+12	28T 30L
150	180	-10	+17	+33	17L 43L	+6	+21	6L 31L	0	+25	0L 35L	0	+16	0L 26L	0	+10	0L 20L	-3	+7	3T 17L	-6	+10	6T 20L	-8	+2	8T 12L	-11	+5	11T 15L
		-25	+43	+83	43L 108L	+14	+54	14L 79L	0	+63	0L 88L	0	+40	0L 65L	0	+25	0L 50L	-7	+18	7T 43L	-14	+26	14T 51L	-21	+4	21T 29L	-28	+12	28T 37L
180	250	-12	+20	+38	20L 50L	+6	+24	6L 36L	0	+28	0L 40L	0	+18	0L 30L	0	+11	0L 23L	-3	+9	3T 21L	-6	+12	6T 24L	-9	+2	9T 14L	-13	+5	13T 17L
	200	-30	+50	+96	50L 126L	+15	+61	15L 91L	0	+72	0L 102L	0	+46	0L 76L	0	+29	0L 59L	-7	+22	7T 52L	-16	+30	16T 60L	-24	+5	24T 35L	-33	+13	33T 43L
250	315	-14	+22	+43	22L 57L	+7	+27	7L 41L	0	+32	0L 46L	0	+20	0L 34L	0	+13	0L 27L	-3	+10	3T 24L	-6	+14	6T 28L	-11	+2	11T 16L	-14	+6	14T 20L
200	010	-35	+56	+108	56L 143L	+17	+69	17L 104L	0	+81	0L 116L	0	+52	0L 87L	0	+32	0L 67L	-7	+25	7T 60L	-16	+36	16T 71L	-27	+5	27T 40L	-36	+16	36T 51L

The tolerances in this table are in conformance with ANSI/ABMA Standard 7-1988.

RADIAL BALL, SPHERICAL AND CYLINDRICAL ROLLER BEARINGS

Tolerance and housing bore shown as variance from nominal bearing O.D. All data except nominal dimensions are in ten-thousands of an inch (5 = 0.0005") and thousandths of a millimeter or micrometer (5 = 0.005mm).

See pages 26 through 31 for actual shaft and housing diameters

HOUSING

for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

В	earing O	.D.		M6			M7			N6			N7			P6			P7	
Nom	ninal	Tol.	Hous Bo	sing re	F i4	Hous Bo	sing re	F i4	Hou: Bo	sing re	F i4	Hou Bo	sing ore	Ei4	Hou: Bo	sing re	F 14	Hou: Bo	sing ore	54
Over	Incl.	+0 To	min.	max		min.	max	гπ	min.	max		min.	max	- Fit	min.	max		min.	max	
		in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
m	m	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
		-3	-6	-2	6T 1L	-7	0	7T 3L	-8	-4	8T 1T	-9	-2	9T 1L	-10	-6	10T 3T	-11	-4	11T 1T
10	18	-8	-15	-4	15T 4L	-18	0	18T 8L	-20	-9	20T 1T	-23	-5	23T 3L	-26	-15	26T 7T	29	-11	29T 3T
10	20	-3.5	-7	-2	7T 1.5L	-8	0	8T 3.5L	-9	-4	9T 0.5T	-11	-3	11T 0.5L	-12	-7	12T 3.5T	-14	-6	14T 2.5T
	30	-9	-17	-4	17T 5L	-21	0	21T 9L	-24	-11	24T 2T	-28	-7	28T 2L	-31	-18	31T 9T	-35	-14	35T 5T
30	50	-4.5	-8	-2	8T 2.5L	-10	0	10T 4.5L	-11	-5	11T 0.5T	-13	-3	13T 1.5L	-15	-8	15T 3.5T	-17	-7	17T 2.5T
	50	-11	-20	-4	20T 7L	-25	0	25T 11L	-28	-12	28T 1T	-33	-8	33T 3L	-37	-21	37T 10T	-42	-17	42T 6T
50	80	-5	-9	-2	9T 3L	-12	0	12T 5L	-13	-6	13T 1T	-15	-4	15T 1L	-18	-10	18T 5T	-20	-8	20T 3T
		-13	-24	-5	24T 8L	-30	0	30T 13L	-33	-14	33T 1T	-39	-9	39T 4L	-45	-26	45T 13T	-51	-21	51T 8T
80	120	-6	-11	-2	11T 4L	-14	0	14T 6L	-15	-6	15T 0T	-18	-4	18T 2L	-20	-12	20T 6T	-23	-9	23T 3T
	120	-15	-28	-6	28T 9L	-35	0	35 15L	-38	-16	38T 1T	-45	-10	45T 5L	-52	-30	52T 15T	-59	-24	59T 9T
120	150	-7	-13	-3	13T 4L	-16	0	16T 7L	-18	-8	18T 1T	-20	-5	20T 2L	-24	-14	24T 7T	-27	-11	27T 4T
		-18	-33	-8	33T 10L	-40	0	40T 18L	-45	-20	45T 2T	-52	-12	52T 6L	-61	-36	61T 18T	-68	-28	68T 10T
150	180	-10	-13	-3	13T 7L	-16	0	16T 10L	-18	-8	18T 2L	-20	-5	20T 5L	-24	-14	24T 4T	-27	-11	27T 1T
		-25	-33	-8	33T 17L	-40	0	40T 25L	-45	-20	45T 5L	-52	-12	52T 13L	-61	-36	61T 11T	-68	-28	68T 3T
180	250	-12	-15	-3	15T 9L	-18	0	18T 12L	-20	-9	20T 3L	-24	-6	24T 6L	-28	-16	28T 4T	-31	-13	31T 1T
	200	-30	-37	-8	37T 22L	-46	0	46T 30L	-51	-22	51T 8L	-60	-14	60T 16L	-70	-41	70T 11T	-79	-33	79T 3T
250	315	-14	-16	-4	16T 10L	-20	0	20T 14L	-22	-10	22T 4L	-26	-6	25T 8L	-31	-19	31T 5T	-35	-14	35T 0L
200	515	-35	-41	-9	41T 26L	-52	0	52T 35L	-57	-25	57T 10L	-66	-14	66T 21L	-79	-47	79T 12T	-88	-36	88T 1T

The tolerances in this table are in conformance with ANSI/ABMA Standard 7 - 1988.

Continued on the next page

RADIAL BALL, SPHERICAL AND CYLINDRICAL **ROLLER BEARINGS** (continued)

Tolerance and housing bore shown as variance from nominal bearing O.D. All data except nominal dimensions are in ten-thousands of an inch (5 = 0.0005") and thousandths of a millimeter or micrometer (5 = 0.005 mm).

See pages 26 through 31 for actual shaft and housing diameters

for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

HOU	SING																									
В	earing O	.D.	F7			G7		H8			H7			H6			J6		J7			K6			K7	
Nor	ninal	Tol.	Housing Bore		Housin Bore	g	Hous	sing ore		Hou B	using ore		Hou B	using ore		Hou	using ore		Housing Bore		Hou Bo	sing ore		Hous	sing re	
(m Over	ax.) Incl.	+ 0 To	min. max	Fit	min. m	ax	min.	max	Fit	min	. max	- Fit	min	. max	Fit	min.	max	Fit	min. max	Fit	min.	max	Fit	min.	max	Fit
r	nm	in. mm	in. in. mm mm	in. mm	in. i mm m	n. in. m mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. in. mm mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm
315	400	-16	+24 +47	24L 63L	+7 +3	0 7L 46L	0	+35	0L 51L	0	+22	0L 38L	0	+14	0L 30L	-3	+11	3T 27L	-7 +15	7T 31L	-11	+3	11T 19L	-16	+7	16T 23L
515	400	-40	+62 +119 1	62L 159L	+18 +7	5 115L	0	+89	0L 129L	0	+57	0L 97L	0	+36	0L 76L	-7	+29	7T 69L	-18 +39	18T 79L	-29	+7	29T 47L	-40	+17	40T 57L
400	500	-18	+27 +52	27L 70L	+8 +3	3 51L	0	+38	0L 56L	0	+25	0L 43L	0	+16	0L 34L	-3	+13	3T 31L	-8 +17	8T 35L	-13	+3	13T 21L	-18	+7	18T 25L
		-45	+68 +131 1	68L 176L	+20 +8	³ 20L 128L	0	+97	0L 142L	0	+63	0L 108L	0	+40	0L 85L	-7	+33	7T 78L	-20 +43	20T 88L	-32	+8	32T 53L	-45	+18	45T 63L
500	630	-20	+30 +57	30L 77L	+9 +3	9L 6 56L	0	+43	0L 63L	0	+28	0L 48L	0	+17	0L 37L	-3	+15	3T 35L	-9 +19	9T 39L	-17	0	17T 20L	-28	0	28T 20L
		-50	+76 +146 1	76L 196L	+22 +9	22L 2 142L	0 +	+110	0L 160L	0	+70	0L 120L	0	+44	0L 94L	-7	+37	7T 87L	-22 +48	22T 98L	-44	0	44T 50L	-70	0	70T 50L
630	800	-30	+31 +63	31L 93L	+9 +4	1 9L 71L	0	+49	0L 79L	0	+31	0L 61L	0	+20	0L 50L	-4	+16	4T 46L	-9 +22	9T 52L	-20	0	20T 30L	-31	0	31T 30L
		-75	+80 +160 2	80L 235L	+24 +10	24L 4 179L	0 +	+125	0L 200L	0	+80	0L 155L	0	+50	0L 125L	-10	+40	10T 115L	-24 +56	24T 131L	-50	0	50T 75L	-80	0	80T 75L
800	1000	-39	+34 +69 1	34L 108L	+10 +4	6 10L 85L	0	+55	0L 94L	0	+35	0L 74L	0	+22	0L 61L	-4	+18	4T 57L	-10 +25	10T 64L	-22	0	22T 39L	-35	0	35T 39L
		-100	+86 +176 2	86L 276L	+26 +11	6 26L 216L	0 +	+140	0L 240L	0	+90	0L 190L	0	+56	0L 156L	-10	+46	10T 146L	-26 +64	26T 164L	-56	0	56T 100L	-90	0	90T 100L
1000	1250	-49	+39 +80 1	39L 129L	+11 +5	11L 2 101L	0	+65	0L 114L	0	+41	0L 90L	0	+26	0L 75L	-4	+22	4T 71L	-11 +30	11T 79L	-26	0	26T 49L	-41	0	41T 49L
		-125	+98 +203	98L 328L	+28 +13	³ 28L 258L	0 +	+165	0L 290L	0	+105	0L 230L	0	+66	0L 191L	-10	+56	10T 181L	-28 +77	28T 202L	-66	0	66T 125L	-105	0	105T 125L
1250	1600	-63	+43 +93 1	43L 156L	+12 +6	1 12L 1 124L	0	+77	0L 140L	0	+49	0L 112L	0	+31	0L 94L	-4	+27	4T 90L	-12 +37	12T 100L	-31	0	31T 63L	-49	0	49T 63L
		-160	+110 +235 3	110L 395L	+30 +15	⁵ 30L 315L	0 +	+195	0L 355L	0	+125	0L 285L	0	+78	0L 238L	-10	+68	10T 228L	-30 +95	30T 255L	-78	0	78T 160L	-125	0	125T 160L
1600	2000	-79	+47 +106	47L 185L	+13 +7	13L 2 151L	0	+91	0L 170L	0	+59	0L 138L	0	+36	0L 115L	-4	+32	4T 111L	-13 +46	13T 125L	-36	0	36T 79L	-59	0	59T 79L
		-200	+120 +270 1	120L 470L	+32 +18	32L 2 382L	0 +	+230	0L 430L	0	+150	0L 350L	0	+92	0L 292L	-10	+82	10T 282L	-32 +118	32T 318L	-92	0	92T 200L	-150	0	150T 200L
2000	2500	-98	+51 +120 2	51L 218L	+13 +8	13L 2 180L	0 +	+110	0L 208L	0	+69	0L 167L	0	+43	0L 141L	-4	+39	4T 137L	-13 +56	13T 154L	-43	0	43T 98L	-69	0	69T 98L
		-250	+130 +305	130L 555L	+34 +20	19 34L 459L	0 +	+280	0L 530L	0	+175	0L 425L	0	+110	0L 360L	-10	+100	10T 350L	-34 +141	34T 391L	-110	0	110T 250L	-175	0	175T 250L

The tolerances in this table are in conformance with ANSI/ABMA Standard 7 - 1988.

RADIAL BALL, SPHERICAL AND CYLINDRICAL ROLLER BEARINGS (continued)

Tolerance and housing bore shown as variance from nominal bearing O.D. All data except nominal dimensions are in ten-thpusands of an inch (5 = 0.0005") and thousandths of a millimeter or micrometer (5 = 0.005mm).

See pages 26 through 31 for actual shaft and housing diameters

for normal loading of ABEC-1 and ABEC-3 radial ball bearings and 7000WN Series angular contact ball bearings.

For particular operating conditions of radial ball, spherical and cylindrical roller bearings, see pages 32, 33 and 34.

HOUS	ING																			
E	Bearing C	D.D.		M6			M7			N6			N7			P6			P7	
Non (m	ninal av.)	Tol.	Hou: Bo	sing re	Fit	Hou Bo	sing pre	Fit	Hou B	ising ore	Fit	Hou Bo	sing pre	Fit	Hou Bo	sing pre	Fit	Hou Bo	sing ore	Fit
Over	Incl.	To	min.	max]	min.	max		min.	max		min.	max		min.	max]	min.	max] '"
mr	n	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm	in. mm
315	400	-16	-18	-4	18T 12L	-22	0	22T 16L	-24	-10	24T 6L	-29	-6	29T 10L	-34	-20	34T 4T	-39	-16	39T 0T
		-40	-46	-10	46T 30L	-57	0	57T 40L	-62	-26	62T 14L	-73	-16	73T 24L	-87	-51	87T 11T	-98	-41	98T 1T
400	500	-18	-20	-4	20T 14L	-25	0	25T 18L	-26	-11	26T 7L	-31	-7	31T 11L	-37	-22	37T 4T	-43	-18	43T 0T
		-45	-50	-10	50T 35L	-63	0	63T 45L	-67	-27	67T 18L	-80	-17	80T 28L	-95	-55	95T 10T	-108	-45	108T 0T
500	630	-20	-28	-10	28T 10L	-38	-10	38T 10L	-35	-17	35T 3L	-45	-17	45T 3L	-48	-31	48T 11T	-58	-31	58T 11T
		-50	-70	-26	70T 24L	-96	-26	96T 24L	-88	-44	88T 6L	-114	-44	114T 6L	-122	-78	122T 28T	-148	-78	148T 28T
630	800	-30	-31	-12	31T 18L	-43	-12	43T 18L	-39	-20	39T 10L	-51	-20	51T 10L	-54	-35	54T 5T	-66	-35	66T 5T
		-75	-80	-30	80T 45L	-110	-30	110T 45L	-100	-50	100T 25L	-130	-50	130T 25L	-138	-88	138T 13T	-168	-88	168T 13T
800	1000	-39	-35	-13	35T 26L	-49	-13	49T 26L	-44	-22	44T 17L	-57	-22	57T 17L	-61	-39	61T 0T	-75	-39	75T 0T
		-100	-90	-34	90T 66L	-124	-34	124T 66L	-112	-56	112T 44L	-146	-56	146T 44L	-156	-100	156T 0T	-190	-100	190T 0T
1000	1250	-49	-42	-16	42T 33L	-57	-16	57T 33L	-52	-26	52T 23L	-67	-26	67T 23L	-73	-47	73T 2L	-89	-47	89T 2L
		-125	-106	-40	106T 85L	-145	-40	145T 85L	-132	-66	132T 59L	-171	-66	171T 59L	-186	-120	186T 5L	-225	-120	225T 5L
1250	1600	-63	-50	-19	50T 44L	-68	-19	68T 44L	-61	-31	61T 32L	-80	-31	80T 23L	-86	-55	86T 8L	-104	-55	104T 8L
		-160	-126	-48	126T 112L	-173	-48	173T 112L	-156	-78	156T 82L	-203	-78	203T 82L	-218	-140	218T 20L	-265	-140	265T 20L
1600	2000	-79	-59	-23	59T 56L	-82	-23	82T 56L	-72	-36	72T 43L	-95	-36	95T 43L	-103	-67	103T 12L	-126	-67	126T 12L
		-200	-150	-58	150T 142L	-208	-58	208T 142L	-184	-92	184T 108L	-242	-92	242T 108L	-262	-170	262T 30L	-320	-170	320T 30L
2000	2500	-98	-70	-27	70 71L	-96	-27	96T 71L	-87	-43	87T 55L	-112	-43	112T 55L	-120	-77	120T 21L	-146	-77	146T 21L
		-250	-178	-68	178T 182L	-243	-68	243T 182L	-220	-110	220T 140L	-285	-110	285T 140L	-305	-195	305T 55L	-370	-195	370T 55L

The tolerances in this table are in conformance with ANSI/ABMA Standard 7 - 1988.

ABEC-1 AND ABEC-3 BALL BEARINGS

Shaft and Housing Fits

The tables on the following pages show information supplemental to and coherent with that found on pages 17 through 25 as applied to ball bearings. Actual shaft and housing diameters are listed for ABEC-1, ABEC-3 and angular contact 7000WN series. These recommendations can be used for most applications having light to normal loads. Shaft and housing fits for wide inner ring ball bearings are found on page 44.

ABEC-7 BALL BEARINGS

Shaft fits;

As a general rule, it is recommended that the shaft size and tolerance for seating ABEC-7 superprecision bearings be the same as the bearing bore thus producing an average line-to-line fit. For larger shaft sizes the average fit increases to a slight interference.

Example:

Bore Size, Inches	Shaft Diameter, Inches	Resultant Mounting Fits, Inches	Average Fit
max. 2.1654	min. 2.1652	.0002 tight	line-to-line
min. 2.1652	max. 2.1654	.0002 loose	inte to inte

Housing fits;

Under normal conditions of rotating shaft, the outer ring is stationary and should be mounted with a hand push or light tapping fit. Should the housing be the rotating member, the same fundamental considerations apply in mounting the outer race as in the case of an inner ring omunted on a rotating shaft.

As a general rule, the minimum housing bore dimensions for superprecision bearings may be established as the same as the maximum bearing outside diameter. If the bearing O.D. tolerance is .0003 inch, the maximum housing bore should be established as .0003 inch larger than the minimum housing bore dimension.

Example:

Outside Diameter, Inches	Housing Bore, Inches	Resultant Mounting Fits, Inches	Average Fit, Inches	
max. 3.5433	min. 3.5433	.0000 tight	.0003 loose	
min. 3.5430	max. 3.5436	.0006 loose		

On high-speed applications, it is extremely important that the floating bearing or pair can move axially to compensate for thermal changes. It cannot float laterally if restricted by a tight housing bore or by the radial expansion of the bearing itself. Cases involving unusual conditions should be submitted to Timken Engineering for complete recommendations.

It is equally important that all shaft and housing shoulders be absolutely square, and that the faces of the spacers be square and parallel.

SELECTIVE ASSEMBLY

Under certain conditions it may be desirable to control fits more accurately without the added expense of using closer-tolerence bearings and mating parts. This can be accomplished by selective assembly of bearings, shafts and housings after they have been sized and grouped according to bores and outside diameters. Generally, however, it is more satisfactory for production and servicing to use closer shaft and housing tolerences with bearings having a higher degree of precision.

Bearings with coded bores and O.D.'s are available on special order to facilitate this selective assembly process.

SHAFTS AND HOUSING FILLETS

The recommended shaft and housing fillet radii listed in the dimension tables of the product catalogs should be used to assure proper seating of the bearings against shaft and housing shoulders. The manufacturing tolerences on bearing corner radii are such that the corners will clear the cataloged fillet radii when the bearings are tightly seated against shoulders. Shaft and housing radii and shoulders should be free from nicks and burrs. Whenever possible, undercutting of bearing seats and adjacent shoulders per figure below is advisable to help avoid tapered bearing seats, and assure clearing corners.

FINISH OF SHAFTS AND HOUSINGS

For ABEC-1 bearing applications shaft finish should be 32 micro inches AA maximum regardless of size.

These figures are to be used as a guide only. Special situations may demand better finishes.

SHAFT FITS, ABEC-1, ABEC-3

NOTE: These tables are to used for applications where only one ring (either inner or outer) has an interference fit with its shaft and housing. The guidelines for operating conditions covering these tables are found on page 32. In cases where interference fits are used for both rings, bearings with a special internal clearance may be required. Shaft diameter dimensions are for solid steel shafts. Consult The Timken Company when using hollow shafts.

SHAFT FITS	, ABE(C-1, A	BEC-3	3	Th bo pa	nese di ore fit w nges 18	ameter /hich cl 3 and 2	s resul osely o 0.	t in sha conform	ft to b s to k	earing 5 listed	on	Th boi pa	ese dia re fit w ges 18	ameter hich cl and 2	s resul osely c 0.	It in sha conform	ft to b s to g	earing 3 listed	on
Basic Bearing		Bo Tolei	ore rance				Shaft Ro Shaft S	tating, L tationary	oad Static	onary or stating					Shaft S Shaf	tationary ft Rotatin	r, Load Sta Ig, Load R	ationary lotating	or	
Number	m	ax.	m	nin.	ma	shaft o ax.	liameter n	nin.	ABE	mean C-1	fit tight AB	EC-3	m	shaft o ax.	diameter n	nin.	A	mea BEC-1	n fit loose. Al) BEC-3
	in.	mm	in	mm	in.	mm	in	mm	in.	mm	in.	mm	in.	mm	in	mm	in.	mm	in.	mm
EXTRA-SMALL 3	0, S, F-F	LANGE	D SERIE	s																
33K3, F33K3	0.1250	3.175	0.1247	3.167	0.1252	3.180	0.1250	3.175	0.00025	0.006	0.00020	0.005	0.1248	3.170	0.1245	3.162	0.00020	0.005	0.00025	0.006
33K4	0.1250	3.175	0.1247	3.167	0.1252	3.180	0.1250	3.175	0.00025	0.006	0.00020	0.005	0.1248	3.170	0.1245	3.162	0.00020	0.005	0.00025	0.006
33K5	0.1875	4.762	0.1872	3.754	0.1877	4.768	0.1875	4.762	0.00025	0.006	0.00020	0.005	0.1873	4.752	0.1870	4.750	0.00020	0.005	0.00025	0.006
34K	0.1575	4.000	0.1572	3.992	0.1577	4.006	0.1575	4.001	0.00025	0.006	0.00020	0.005	0.1573	3.995	0.1570	3.988	0.00020	0.005	0.00025	0.006
35K	0.1969	5.000	0.1966	4.992	0.1971	5.006	0.1969	5.001	0.00025	0.006	0.00020	0.005	0.1967	4.996	0.1964	4.989	0.00020	0.005	0.00025	0.006
36K	0.2362	6.000	0.2359	5.992	0.2364	6.005	0.2362	5.999	0.00025	0.006	0.00020	0.005	0.2360	5.994	0.2357	5.987	0.00020	0.005	0.00025	0.006
37K	0.2756	7.000	0.2753	6.992	0.2758	7.005	0.2755	6.998	0.00020	0.005	0.00015	0.004	0.2754	6.995	0.2750	6.985	0.00025	0.006	0.00030	0.008
38K,38KV	0.3150	8.000	0.3147	7.992	0.3152	8.006	0.3149	7.998	0.00020	0.005	0.00015	0.004	0.3148	7.996	0.3144	7.986	0.00025	0.006	0.00030	0.008
39K	0.3543	9.000	0.3540	8.992	0.3545	9.004	0.3542	8.997	0.00020	0.005	0.00015	0.004	0.3541	8.994	0.3537	8.984	0.00025	0.006	0.00030	0.008
S1K,S1K7,FS1K7	0.2500	6.350	0.2497	6.342	0.2502	6.355	0.2499	6.347	0.00020	0.005	0.00015	0.004	0.2498	6.345	0.2494	6.335	0.00025	0.006	0.00030	0.008
S3K,FS3K	0.3750	9.525	0.3747	9.517	0.3752	9.530	0.3749	9.522	0.00020	0.005	0.00015	0.004	0.3748	9.520	0.3744	9.510	0.00025	0.006	0.00030	0.008
S5K	0.5000	12.700	0.4997	12.692	0.5002	12.705	0.4999	12.697	0.00020	0.005	0.00015	0.004	0.4998	12.695	0.4993	12.682	0.00030	0.008	0.00035	0.009
S7K	0.6250	15.875	0.6247	15.867	0.6252	15.880	0.6249	15.872	0.00020	0.005	0.00015	0.004	0.6248	15.870	0.6243	15.857	0.00030	0.008	0.00035	0.009
S8K	0.7500	19.050	0.7496	19.040	0.7504	19.060	0.7501	19.053	0.00045	0.011	0.00035	0.009	0.7497	19.042	0.7492	19.030	0.00035	0.009	0.00045	0.011
S9K	0.8750	22.225	0.8746	22.215	0.8754	22.235	0.8751	22.228	0.00045	0.011	0.00035	0.009	0.8747	22.217	0.8742	22.205	0.00035	0.009	0.00045	0.011
S10K	1.0000	25.400	0.9996	25.390	1.0004	25.410	1.0001	25.403	0.00045	0.011	0.00035	0.009	0.9997	25.392	0.9992	25.380	0.00035	0.009	0.00045	0.011
S11K	1.1250	28.575	1.1246	28.565	1.1254	28.585	1.1251	28.578	0.00045	0.011	0.00035	0.009	1,1247	28.567	1.1242	28,555	0.00035	0.009	0.00045	0.011
S12K	1.2500	31.750	1.2495	31.737	1.2505	31.763	1.2501	31.753	0.00055	0.014	0.00045	0.011	1.2496	31.740	1.2490	31.725	0.00045	0.011	0.00055	0.014
F2DD-2	0.1253	3.183	0.1250	3.175	0.1250	3.175	0.1247	3.167	0.00030	0.008	0.00025	0.006	0.1250	3.175	0.1247	3.167	0.00030	0.008	0.00025	0.006
F2	0.1878	4.770	0.1875	4.762	0.1875	4.762	0.1872	4.755	0.00030	0.008	0.00025	0.006	0.1875	4.762	0.1872	4.755	0.00030	0.008	0.00025	0.006
F3	0.1878	4.770	0.1875	4.762	0.1875	4.762	0.1872	4.755	0.00030	0.008	0.00025	0.006	0.1875	4.762	0.1872	4.755	0.00030	0.008	0.00025	0.006
F4	0 2503	6 358	0 2500	6 350	0.2500	6.350	0 2497	6 342	0.00030	0.008	0.00025	0.006	0.2500	6 350	0 2497	6 342	0.00030	0.008	0.00025	0.006
F5	0.3128	7.946	0.3125	7.938	0.3125	7.938	0.3122	7.930	0.00030	0.008	0.00025	0.006	0.3125	7.938	0.3122	7.930	0.00030	0.008	0.00025	0.006

 $\ensuremath{^{(1)}}\xspace$ Mean fit loose. These sizes have plus bore tolerances.

SHAFT FITS, ABEC-1, ABEC-3

NOTE: These tables are to used for applications where only one ring (either inner or outer) has an interference fit with its shaft and housing. The guidelines for operating conditions covering these tables are found on page 32. In cases where interference fits are used for both rings, bearings with a special internal clearance may be required. Shaft diameter dimensions are for solid steel shafts. Consult The Timken Company when using hollow shafts.

SHAFT FITS,	ABEC	C-1,	ABE	C-3	The bore pag	se dia e fit wl es 18	ameters hich clo and 20	s result i osely co).	in shafi nforms	to be to k5	aring listed c	on	The bor pag	ese dia e fit wh jes 18	meters hich clos and 20.	result i sely cor	n shaft nforms	to bea to g6	aring listed c	'n
Basic Bearing Number		То	Bore lerance				Shaft Rot Shaft St	tating, Lo tationary	ad Statio	onary o otating	r			5	Shaft Stat Shaft I	tionary, L Rotating,	oad Stati Load Ro	ionary o tating	or	
Number	m	ax.	m	in.	ma	shaft d	liameter	nin.	ABE	mean	fit tight ABF	C-3	ma	shaft di	iameter	nin.	AB	mean	fit loose) =C-3
	in.	mm	in	mm	in.	mm	in	mm	in.	mm	in.	mm	in.	mm	in	mm	in.	mm	in.	mm
9100, 9300, 200, 300). 5200. 5	5300	SERIES																	
00	0 3037	10	0 3034	0 002	0 3030	10.005	0 3036	0 007	0 0002	0.005	0.00015	0.004	0 3035	0 005	0 3031	0 085	0.00025	0.006	0.00030	0.008
01	0.4724	12	0.4721	11.992	0.4726	12.004	0.4723	11.996	0.0002	0.005	0.00015	0.004	0.4722	11.994	0.4717	11.981	0.00030	0.008	0.00035	0.009
02	0.5906	15	0.5903	14.992	0.5908	15.006	0.5905	14.999	0.0002	0.005	0.00015	0.004	0.5904	14.996	0.5899	14.983	0.00030	0.008	0.00035	0.009
03	0.6693	17	0.6690	16.992	0.6695	17.005	0.6692	16.998	0.0002	0.005	0.00015	0.004	0.6691	16.995	0.6686	16.982	0.00030	0.008	0.00035	0.009
04	0.7874	20	0.7870	19.990	0.7879	20.010	0.7875	20.002	0.0005	0.013	0.00035	0.009	0.7871	19.992	0.7866	19.980	0.00035	0.009	0.00045	0.011
05	0.9843	25	0.9839	24.990	0.9848	25.014	0.9844	25.004	0.0005	0.013	0.00035	0.009	0.9840	24.994	0.9835	24.981	0.00035	0.009	0.00045	0.011
06	1.1811	30	1.1807	29.990	1.1816	30.010	1.1812	30.002	0.0005	0.013	0.00035	0.009	1.1808	29.992	1.1803	29.980	0.00035	0.009	0.00045	0.011
07	1.378	35	1.3775	34.987	1.3785	35.014	1.3781	35.004	0.0006	0.014	0.00045	0.011	1.3776	34.991	1.3770	34.976	0.00045	0.011	0.00055	0.014
08	1.5/48	40	1.5/43	39.987	1.5/53	40.013	1.5/49	40.002	0.0006	0.014	0.00045	0.011	1.5/44	39.990	1.5/38	39.975	0.00045	0.011	0.00055	0.014
09	1.7717	40	1.7712	44.907	1.7722	40.014	1.7710	43.004	0.0008	0.014	0.00045	0.011	1.7713	44.991	1.7707	44.970	0.00045	0.011	0.00055	0.014
10	1.9685	50	1.9680	49.987	1.9690	50.013	1.9686	50.002	0.0006	0.014	0.00045	0.011	1.9681	49.990	1.9675	49.974	0.00045	0.011	0.00055	0.014
11	2.1654	55	2.1648	54.985	2.1660	55.016	2.1655	55.004	0.0007	0.017	0.00055	0.014	2.1650	54.991	2.1643	54.973	0.00045	0.011	0.00055	0.014
12	2.5022	65	2.5010	64 985	2.5020	65 016	2.5025	65 004	0.0007	0.017	0.00055	0.014	2.5010	64 991	2.5580	64 973	0.00045	0.011	0.00055	0.014
14	2.7559	70	2.7553	69.985	2.7565	70.015	2.7560	70.002	0.0007	0.017	0.00055	0.014	2.7555	69.990	2.7548	69.972	0.00045	0.011	0.00055	0.014
15	2 05 29	75	2 0552	74 095	2 05 2 4	75.016	2 05 20	75.004	0.0007	0.017	0.00055	0.014	2 05 24	74 001	2 05 17	74 072	0.00045	0.011	0.00055	0.014
15	3.1496	80	3.1490	79.985	3.1502	80.015	3.1497	80.002	0.0007	0.017	0.00055	0.014	3.1492	79.990	3.1485	79.972	0.00045	0.011	0.00055	0.014
17	3.3465	85	3.3457	84.980	3.3472	85.019	3.3466	85.004	0.0008	0.020	0.00065	0.017	3.3460	84.988	3.3452	84.968	0.00050	0.013	0.00065	0.017
18	3.5433	90	3.5425	89.980	3.5440	90.018	3.5434	90.002	8000.0	0.020	0.00065	0.017	3.5428	89.987	3.5420	89.967	0.00050	0.013	0.00065	0.017
19	3.7402	9 5	3.7394	94.980	3.7409	95.019	3.7403	95.004	0.0008	0.020	0.00065	0.017	3.7397	94.988	3.7389	94.968	0.00050	0.013	0.00065	0.017
20	3.9370	100	3.9362	99.980	3.9377	100.018	3.9371	100.002	0.0008	0.020	0.00065	0.017	3.9365	99.987	3.9357	99.967	0.00050	0.013	0.00065	0.017
21	4.1339	105	4.1331	104.980	4.1346	105.019	4.1340	105.004	0.0008	0.020	0.00065	0.017	4.1334	104.988	4.1326	104.968	0.00050	0.013	0.00065	0.017
22	4.3307	110	4.3299	109.980	4.3314	110.018	4.3308	110.002	0.0008	0.020	0.00065	0.017	4.3302	109.987	4.3294	109.967	0.00050	0.013	0.00065	0.017
EXTRA-LARGE SEF	RIES																			
124, 224, 324	4.7244	120	4.7236	119.980	4.7251	120.018	4.7245	120.002	0.0008	0.020	0.00065	0.017	4.7239	119.987	4.7231	119.967	0.00050	0.013	0.00065	0.017
126, 226, 326	5.1181	130	5.1171	129.975	5.1189	130.020	5.1182	130.002	0.0010	0.024	0.00075	0.019	5.1175	129.984	5.1166	129.962	0.00055	0.014	0.00075	0.019
128, 228, 328	5.5118	140	5.5108	139.975	5.5126	140.020	5.5119	140.002	0.0010	0.024	0.00075	0.019	5.5112	139.984	5.5103	139.962	0.00055	0.014	0.00075	0.019
9130, 130, 230, 330	5.9055	150	5.9045	149.975	5.9063	150.020	5.9056	150.002	0.0010	0.024	0.00075	0.019	5.9049	149.984	5.9040	149.962	0.00055	0.014	0.00075	0.019
9132, 132, 232	0.2992	100	0.2982	109.970	0.3000	160.020	0.2993	160.002	0.0010	0.024	0.00075	0.019	0.2980	109.984	0.2977	109.902	0.00055	0.014	0.00075	0.019
9134, 134, 234	6.6929	170	6.6919	169.975	6.6937	170.020	6.6930	170.002	0.0010	0.024	0.00075	0.019	6.6923	169.984	6.6914	169.962	0.00055	0.014	0.00075	0.019
9136, 136, 236, 336	7.0866	180	7.0856	1/9.9/5	7.08/4	180.020	7.0867	180.002	0.0010	0.024	0.00075	0.019	7.0860	179.984	7.0851	1/9.962	0.00055	0.014	0.00075	0.019
9130, 130, 230, 330	7.4603	190	1.4791	109.970	7.4013	190.020	7.4605	190.005	0.0012	0.030	0.00093	0.024	1.4191	107.704	7.4700	109.930	0.00035	0.014	0.00080	0.020
9140, 240, 340	7.8740	200	7.8728	199.969	7.8750	200.025	7.8742	200.005	0.0012	0.030	-	-	7.8734	199.984	7.8722	199.954	0.00060	0.015	-	-
9142, 240, 340 9144 244 344	8.2677	210	8.2665 8.6602	212.509	8.258/	209.771	8.2678 8.6616	210.002	0.0012	0.030	-	_	8.2672	209.98/	8.2658 8.6506	209.951	0.00060	0.015	_	-
9146. 246	9,0551	220	9,0539	229,969	9,0561	230.025	9.0553	230.005	0.0012	0.030	_	_	9,0545	230,022	9,0533	229.951	0.00060	0.015	_	_
240.040	0.4400	240	0.447/	220.042	0.4400	240.025	0.4400	240.005	0.0012	0.020			0.4400	220.004	0.4470	220.054	0.000/0	0.015		
248, 348	9.4488	240	9.44/6 0.8/11	239.909 210 061	9.4498	240.025	9.4490 Q 8426	240.005	0.0012	0.030	-	_	9.4482	237.984	9.4470 9.8404	239.954	0.00000	0.015	-	-
9152. 252. 352	10.2362	260	10.2348	259.964	10.2373	260.027	10.2364	260.005	0.0012	0.036	_	-	10.2355	259.982	10.2343	259.951	0.00060	0.015	_	_
9156, 256, 356	11.0236	280	11.0222	279.964	11.0247	280.027	11.0238	280.005	0.0014	0.036	-	-	11.0229	279.982	11.0217	279.951	0.00060	0.015	-	-
9160. 260	11 8110	300	11 8094	299 964	11 8121	300 027	11 8112	300.005	0.0014	0.036	-	_	11 8102	200 082	11 8091	200 051	0.00060	0.015	_	
9164, 264	12.5984	320	12.5970	319.964	12.5996	320.030	12.5986	320.005	0.0015	0.038	_	_	12.5977	319.982	12.5963	319.946	0.00060	0.015	_	_
9180	15 7480	400	15 7464	399 969	15 7492	400 030	15 7482	400 005	0.0015	0.038	_	_	15 7473	399 982	15 7459	399 946	0.00060	0.015	_	_

SHAFT FITS, 7000 WN

NOTE: These tables are to be used for applications where only one ring (either inner or outer) has an interference fit with its shaft and housing. The guidelines for operating conditions covering these tables are found on page 32. In cases where interference fits are used for both rings, bearings with a special internal clearance may be required. Shaft diameter dimensions are for solid steel shafts. Consult The Timken Company when using hollow shafts.

SHAFT FITS Single Row	S, 7000 WN Angular Co	ontact Bea	arings		These dia bore fit wh pages 18	meters result hich closely c and 20.	t in shaft to b onforms to j	bearing 5 listed on		
Bearing Bore Number		Bearir Diar	ng Bore meter			Shaft Rotating, I shaft di	_oad Stationary	/	Mean	Tight Tit
	n	nax.		min.	m	iax.	n	nin.		
	in.	mm	in	mm	in.	mm	in	mm	in.	mm
00	0.3937	10	0.3934	9.992	0.3936	9.997	0.3939	10.005	0.0002	0.005
01	0.4724	12	0.4721	11.991	0.4723	11.996	0.4726	12.004	0.0002	0.005
02	0.5906	15	0.5903	14.994	0.5905	14.999	0.5908	15.006	0.0002	0.005
03	0.6693	17	0.6690	16.993	0.6692	16.998	0.6695	17.005	0.0002	0.005
04	0.7874	20	0.7871	19.992	0.7873	19.997	0.7876	20.005	0.0002	0.005
05	0.9843	25	0.9840	24.994	0.9842	24.999	0.9845	25.006	0.0002	0.005
06	1.1811	30	1.1808	29.992	1.1810	29.997	1.1813	30.005	0.0002	0.005
07	1.3780	35	1.3777	34.994	1.3779	34.999	1.3783	35.009	0.00025	0.006
08	1.5748	40	1.5745	39.992	1.5747	39.997	1.5751	40.008	0.00025	0.006
09	1.7717	45	1.7714	44.994	1.7716	44.999	1.7720	45.009	0.00025	0.006
10	1.9685	50	1.9682	49.992	1.9684	49.997	1.9688	50.008	0.00025	0.006
11	2.1654	55	2.1650	54.991	2.1653	54.999	2.1658	55.011	0.00035	0.009
12	2.3622	60	2.3618	59.990	2.3621	59.997	2.3626	60.010	0.00035	0.009
13	2.5591	65	2.5587	64.991	2.5590	64.999	2.5595	65.011	0.00035	0.009
14	2.7559	70	2.7555	69.990	2.7558	69.997	2.7563	70.010	0.00035	0.009
15	2.9528	75	2.9524	74.991	2.9527	74.999	2.9532	75.011	0.00035	0.009
16	3.1496	80	3.1492	79.990	3.1495	79.997	3.1500	80.010	0.00035	0.009
17	3.3465	85	3.3460	84.988	3.3464	84.999	3.3470	85.014	0.00045	0.011
18	3.5433	90	3.5428	89.987	3.5432	89.997	3.5438	90.013	0.00045	0.011
19	3.7402	95	3.7397	94.988	3.7401	94.999	3.7407	95.014	0.00045	0.011
20	3.9370	100	3.9365	99.987	3.9369	99.997	3.9375	100.013	0.00045	0.011
21	4.1339	105	4.1334	104.988	4.1338	104.999	4.1344	105.014	0.00045	0.011
22	4.3307	110	4.3302	109.987	4.3306	109.997	4.3312	110.012	0.00045	0.011
24	4.7244	120	4.7239	119.987	4.7243	119.997	4.7249	120.012	0.00045	0.011
26	5.1181	130	5.1174	129.982	5.1180	129.997	5.1187	130.015	0.0006	0.015
28	5.5118	140	5.5111	139.982	5.5117	139.997	5.5124	140.015	0.0006	0.015
30	5.9055	150	5.9048	149.982	5.9054	149.997	5.9061	150.015	0.0006	0.015

HOUSING FITS, ABEC-1, ABEC-3

HOUSING FITS, ABEC-1, ABEC-3

NOTE: These tables are to used for applications where only one ring (either inner or outer) has an interference fit with its shaft and housing. The guidelines for operating conditions covering these tables are found on page 32. In cases where interference fits are used for both rings, bearings with a special internal clearance may be required. Shaft diameter dimensions are for solid steel shafts. Consult The Timken Company when using hollow shafts.

These diameters result in a bearing O.D. to to housing bore fit which closely conforms to H6 listed on pages 22 and 24.

These diameters result in a bearing O.D. housing bore fit which closely conforms to M7 listed on pages 23 and 25.

	Basic Bea	ring Nu	mber			Hou H	sing Sta lousing	tionary, I Rotating	Load Stat	tionary	or			H	ousing I Housing	Rotating,	Load Sta	ationary	/or	
Extra Small	Extra Light	Liaht	Medium	Heavy	mini	Housin mum	g Bore max	kimum	ABE	Mean F C–1	it Loose ABI	EC–3	mini	Housir mum	ng Bore ma	iximum	AB	Mean I EC-1	Fit Tight ABE	C-3
20.0.5	0100 0200	200 7200	200 7200	7400																
30, S, F SERIES	9100, 9300 SERIES	200, 7200 SERIES	SERIES	SERIES	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
		OLIVIEO	OLIVIED	OLIVEO	0.0750	0.505	0.0754	0.505			0.00005		0.0740	0.507	0.0750	0.505	0.00045			0.005
3313, 133	K3 -	-	-	-	0.3750	9.525	0.3754	9.535	0.00040	0.010	0.00035	0.009	0.3743	9.507	0.3750	9.525	0.00015	0.004	0.00020	0.005
33K4 22K5 E22	- K5 -	_	_	_	0.5000	12.700	0.5004	12.710	0.00040	0.010	0.00035	0.009	0.4993	12.082	0.5000	12.700	0.00015	0.004	0.00020	0.005
34K	-	_	_	_	0.5000	15 000	0.5004	16 010	0.00040	0.010	0.00035	0.007	0.4773	15.002	0.5000	15 000	0.00015	0.004	0.00020	0.005
35K	_	_	_	_	0.0277	18 999	0.0303	19.012	0.00045	0.011	0.00033	0.007	0.0272	18 979	0.7480	18 999	0.00013	0.004	0.00020	0.005
36K	_	_	_	_	0.7480	18,999	0.7485	19.012	0.00045	0.011	0.00040	0.010	0.7472	18.979	0.7480	18,999	0.00020	0.005	0.00025	0.006
37K	-	_	-	_	0.8661	21.999	0.8666	22.012	0.00045	0.011	0.00040	0.010	0.8653	21.979	0.8661	29.999	0.00020	0.005	0.00025	0.006
38K	_	_	_	-	0.8661	21.999	0.8666	22.012	0.00045	0.011	0.00040	0.010	0.8653	21.979	0.8661	21.999	0.00020	0.005	0.00025	0.006
201/1/					0.0440	24.000	0.0454	24.012	0.00045	0.011	0.00040	0.010	0.0441	22.000	0.0440	24.000	0.00020	0.005	0.00025	0.004
30K	9100	_	_	_	1.0236	24.000	1 02/1	24.013	0.00045	0.011	0.00040	0.010	1 0228	25.900	1 0236	24.000	0.00020	0.005	0.00025	0.006
	5100				1.0230	23.777	1.0241	20.012	0.00043	0.011	0.00040	0.010	1.0220	23.777	1.0230	23.777	0.00020	0.005	0.00023	0.000
S1K7, FS1	K7 –	-	-	-	0.6250	15.875	0.6254	15.885	0.00040	0.010	0.00035	0.009	0.6243	15.857	0.6250	15.875	0.00015	0.004	0.00020	0.005
S1K	, –	-	-	-	0.7500	19.050	0.7505	19.063	0.00045	0.011	0.00040	0.010	0.7492	19.030	0.7500	19.050	0.00020	0.005	0.00025	0.006
S3K, FS3P	-	-	-	-	0.8750	22.225	0.8755	22.238	0.00045	0.011	0.00040	0.010	0.8742	22.205	0.8750	22.225	0.00020	0.005	0.00025	0.006
55K	-	-	-	-	1.1250	28.575	1.1255	28.588	0.00045	0.011	0.00040	0.010	1.1242	28.555	1.1250	28.575	0.00020	0.005	0.00025	0.006
3/1	-	-	-	-	1.3730	34.920	1.3700	34.940	0.00055	0.014	0.00043	0.011	1.3740	34.900	1.3730	34.923	0.00025	0.000	0.00035	0.009
S8K	-	-	-	-	1.6250	41.275	1.6256	41.290	0.00055	0.014	0.00045	0.011	1.6240	41.250	1.6250	41.275	0.00025	0.006	0.00035	0.009
S9K	-	-	-	-	1.8750	47.625	1.8756	47.640	0.00055	0.014	0.00045	0.011	1.8740	47.600	1.8750	47.625	0.00025	0.006	0.00035	0.009
S10K	-	-	-	-	2.0000	50.800	2.0007	50.818	0.00060	0.015	0.00055	0.014	1.9988	50.770	2.0000	50.800	0.00035	0.009	0.00040	0.010
S11K	-	-	-	-	2.1250	53.975	2.1257	53.993	0.00060	0.015	0.00055	0.014	2.1238	53.945	2.1250	53.975	0.00035	0.009	0.00040	0.010
5125	-	-	-	-	2.2500	0,525	2.2007	0 522	0.00060	0.015	0.00055	0.014	2.2488	0,522	2.2500	0,522	0.00035	0.009	0.00040	0.010
F2002	-	-	-	-	0.3750	9.020	0.3755	9.000	0.00000	0.000	0.00000	0.000	0.3749	9.022	0.3755	9.000	0.00000	0.000	0.00000	0.000
F2	-	-	-	-	0.4375	11.112	0.4378	11.120	0.00000	0.000	0.00000	0.000	0.4374	11.110	0.4378	11.120	0.00000	0.000	0.00000	0.000
F3	-	-	-	-	0.5624	14.285	0.5628	14.295	0.00000	0.000	0.00000	0.000	0.5624	14.285	0.5628	14.295	0.00000	0.000	0.00000	0.000
F4	-	-	-	-	0.6249	15.872	0.6253	15.883	0.00000	0.000	0.00000	0.000	0.6249	15.872	0.6253	15.883	0.00000	0.000	0.00000	0.000
F5	-	_	-	-	0.6874	17.460	0.6878	17.470	0.00000	0.000	0.00000	0.000	0.68/4	17.460	0.6878	17.476	0.00000	0.000	0.00000	0.000
	9101, 9302	_	-	-	1.1024	28.001	1.1029	28.014	0.00045	0.011	0.00040	0.010	1.1016	27.981	1.1024	28.001	0.00020	0.005	0.00025	0.006
-	9303	200	-	-	1.1811	30.000	1.1816	30.013	0.00045	0.011	0.00040	0.010	1.1803	29.980	1.1811	39.000	0.00020	0.005	0.00025	0.006
-	9102	201	-	-	1.2598	31.999	1.2604	32.014	0.00055	0.014	0.00045	0.011	1.2588	31.974	1.2598	31.999	0.00025	0.006	0.00035	0.009
-	9103	202	300	-	1.3780	35.001	1.3786	35.016	0.00055	0.014	0.00045	0.011	1.3770	34.976	1.3780	35.001	0.00025	0.006	0.00035	0.009
	9304	-	301	-	1.4567	37.000	1.45/3	37.015	0.00055	0.014	0.00045	0.011	1.4557	36.975	1.4567	37.000	0.00025	0.006	0.00035	0.009
-	-	203	-	-	1.5748	40.000	1.5754	40.015	0.00055	0.014	0.00045	0.011	1.5738	39.975	1.5748	40.000	0.00025	0.006	0.00035	0.009
-	9104, 9305	-	302	-	1.6535	41.999	1.6541	42.014	0.00055	0.014	0.00045	0.011	1.6525	41.974	1.6535	41.999	0.00025	0.006	0.00035	0.009
-	9105, 9306	204	303	-	1.8504	47.000	1.8510	47.015	0.00055	0.014	0.00045	0.011	1.8494	46.975	1.8504	47.000	0.00025	0.006	0.00035	0.009
-	-	205	304	-	2.0472	51.999	2.0479	52.017	0.00060	0.015	0.00055	0.014	2.0460	51.968	2.0472	51.999	0.00035	0.009	0.00040	0.010
	9106, 9307	-	-	-	2.1654	55.001	2.1661	55.019	0.00060	0.015	0.00055	0.014	2.1642	54.971	2.1654	55.001	0.00035	0.009	0.00040	0.010
-	9107, 9308	206	305	403	2.4409	61.999	2.4416	62.017	0.00060	0.015	0.00055	0.014	2.4397	61.968	2.4409	61.999	0.00030	0.009	0.00040	0.010
-	9108	-	-	-	2.6772	68.001	2.6779	68.019	0.00060	0.015	0.00055	0.014	2.6760	67.970	2.6772	68.001	0.00030	0.009	0.00040	0.010
-	9310	207	306	404	2.8346	71.999	2.8353	72.017	0.00060	0.015	0.00055	0.014	2.8334	71.968	2.8346	71.999	0.00030	0.009	0.00040	0.010
-	9109	_	_	-	2.9528	75.001	2.9535	75.019	0.00060	0.015	0.00055	0.014	2.9516	74.971	2.9528	75.001	0.00030	0.009	0.00040	0.010
	9110	208	307	405	3.1496	80.000	3.1503	80.018	0.00060	0.015	0.00055	0.014	3.1484	79.969	3.1496	80.000	0.00030	0.009	0.00040	0.010
-	9312	209	-	-	3.3456	85.001	3.3474	85.024	0.00080	0.019	0.00065	0.017	3.3451	84.966	3.3465	85.001	0.00040	0.010	0.00050	0.013
-	9111	210	308	406	3.5433	90.000	3.5442	90.023	0.00080	0.019	0.00065	0.017	3.5419	89.964	3.5433	90.000	0.00040	0.010	0.00050	0.013
-	9112	-	-	-	3.7402	95.001	3.7411	120.424	0.00080	0.019	0.00065	0.017	3.7388	94.965	3.7402	95.001	0.00040	0.010	0.00050	0.013
-	9113	211	309	407	3.9370	100.000	3.9379	100.023	0.00080	0.019	0.00065	0.017	3.9356	99.964	3.9370	100.000	0.00040	0.010	0.00050	0.013
-	9114	212	310	408	4.3307	110.000	4.3316	110.023	0.00080	0.019	0.00065	0.017	4.3293	109.964	4.3307	110.000	0.00040	0.010	0.00050	0.013

HOUSING FITS, ABEC-1, ABEC-3

NOTE: These tables are to used for applications where only one ring (either inner or outer) has an interference fit with its shaft and housing. The guidelines for operating conditions covering these tables are found on page 32. In cases where interference fits are used for both rings, bearings with a special internal clearance may be required. Shaft diameter dimensions are for solid steel shafts. Consult The Timken Company when using hollow shafts.

HOUSI					The hou H6	ese dia using bo listed c	meters ore fit v on page	result i vhich cl es 22 ai	n a be osely o nd 24.	aring confoi	O.D. to rms to	D	Th ho M7	ese dia ousing l 7 listed	imeters pore fit on page	result i which c es 23 a	n a be losely nd 25.	aring confo	O.D. to rms to	I
H0031		D, ADEC	-1, ADE	:0-3																
	Basic	Bearing	Number			HO	using Sta Housing	ationary, Rotating	, Load Sta	ationar: Rotating	y or]			н	ousing R Housing S	otating, L Stationar	.oad Sta y, Load	tionary Rotatir	g	
Extra Small	Extra Light	Light	Medium	Heavy		Housi	ng Bore			mean	fit loose			Hous	ing Bore			mean	fit tight	
30 S F	9100 9300	200 7200	300 7300	7400	mini	mum	max	imum	ABF	C-1	ABF	C-3	min	imum	max	imum	ABE	C-1	AB	EC-3
SERIES	SERIES	SERIES	SERIES	SERIES	in.	mm	in	mm	in.	mm	in.	mm	in.	mm	in	mm	in.	mm	in.	mm
_	9115	_	_	_	4.5276	115.001	4.5285	115.024	0.0008	0.019	0.00065	0.017	4.5262	114.965	4.5276	115.001	0.0004	0.010	0.00050	0.013
-	-	213	311	409	4.7244	120.000	4.7253	120.023	0.0008	0.019	0.00065	0.017	4.7230	119.964	4.7244	120.000	0.0004	0.010	0.00050	0.013
-	-	214	-	-	4.9213	125.001	4.9223	125.026	0.0009	0.023	0.00075	0.019	4.9197	124.960	4.9213	125.001	0.0004	0.010	0.00055	0.014
-	9117	215	312	410	5.1181	130.000	5.1191	130.025	0.0009	0.023	0.00075	0.019	5.1165	129.959	5.1181	130.000	0.0004	0.010	0.00055	0.014
	9118	216	313	411	5.5118	140.000	5.5128	140.025	0.0009	0.023	0.00075	0.019	5.5102	139.959	5.5118	140.000	0.0004	0.010	0.00055	0.014
-	9120	217	314	412	5.9055	150.000	5.9065	150.025	0.0009	0.023	0.00075	0.019	5.9039	149.959	5.9055	150.000	0.0004	0.010	0.00055	0.014
-	120-2	218	315	-	6.2992	160.000	6.3002	160.025	0.0010	0.025	0.00080	0.020	6.2976	159.959	6.2992	160.000	0.0003	0.008	0.00050	0.013
_	9121	- 129	316	413	6 6929	160.000	6.3002	100.025	0.0010	0.025	0.00080	0.020	6.6913	169.959	6.2992	170,000	0.0003	0.008	0.00050	0.013
_	122	-	-	_	6.8898	175.000	6.8908	175.026	0.0010	0.025	0.00080	0.020	6.8882	174.960	6.8898	175.001	0.0003	0.008	0.00050	0.013
	0124	220	217	414	7 0044	190.000	7 0074	100.025	0.0010	0.025	0.00090	0.020	7 0950	170.050	7.0044	190.000	0.0002	0.000	0.000E0	0.012
_	124	220	318	414	7.0800	190.000	7.0870	190.025	0.0010	0.025	0.00080	0.020	7.0850	179.939	7.0800	190.000	0.0003	0.008	0.00055	0.013
_	9126	222	319	416	7.8740	200.000	7.8752	200.028	0.0012	0.029	0.00090	0.023	7.8722	199.954	7.8740	200.000	0.0003	0.008	0.00055	0.014
-	126	-	-	-	8.0709	205.001	8.0721	205.029	0.0012	0.029	0.00090	0.023	8.0691	204.955	8.0709	205.001	0.0003	0.008	0.00055	0.014
-	9128	-	-	-	8.2677	210.000	8.2689	210.028	0.0012	0.029	0.00090	0.023	8.2659	209.954	8.2677	210.000	0.0003	0.008	0.00055	0.014
_	_	224	320	_	8.4646	215.001	8.4658	215.029	0.0012	0.029	0.00090	0.023	8.4628	214.955	8.4646	215.001	0.0003	0.008	0.00055	0.014
-	128	-	-	-	8.6614	220.000	8.6626	220.028	0.0012	0.029	0.00090	0.023	8.6596	219.954	8.6614	220.000	0.0003	800.0	0.00055	0.014
-	9130	-	321	418	8.8583	225.001	8.8595	225.029	0.0012	0.029	0.00090	0.023	8.8565	224.955	8.8583	225.001	0.0003	0.008	0.00055	0.014
-	-	226	-	-	9.0551	230.000	9.0563	230.027	0.0012	0.029	0.00090	0.023	9.0533	229.954	9.0551	230.000	0.0003	0.008	0.00055	0.014
	130	-	-	-	9.2520	235.001	9.2532	235.029	0.0012	0.029	0.00090	0.023	9.2502	234.955	9.2520	235.001	0.0003	800.0	0.00055	0.014
-	9132	-	322	-	9.4488	240.000	9.4506	240.027	0.0012	0.029	0.00090	0.023	9.4470	239.954	9.4488	240.000	0.0003	0.008	0.00055	0.014
-	132	228	-	-	9.8425	250.000	9.8437	250.027	0.0012	0.029	0.00090	0.023	9.8407	249.954	9.8425	250.000	0.0003	800.0	0.00055	0.014
-	9134	-	324	-	10.2362	259.999	10.2374	260.032	0.0013	0.033	0.00105	0.027	10.2342	259.942	10.2362	259.999	0.0003	0.008	0.00060	0.015
_	-	230	_	420	10.4331	269.001	10.4343	205.034	0.0013	0.033	0.00105	0.027	10.4311	264.930	10.4331	269 999	0.0003	0.008	0.00080	0.015
	400.0400				11.000/	270.000	11 00 40	200.022	0.0010	0.000	0.00105	0.007	11.001/	070.040	11.000/	270.000	0.0000	0.000	0.000/0	0.015
_	136,9136	-	326	_	11.0236	279.999	11.0248	280.032	0.0013	0.033	0.00105	0.027	11.0216	279.949	11.0236	279.999	0.0003	0.008	0.00060	0.015
_	138	-	328	_	11.8110	299.999	11.8122	300.032	0.0013	0.033	0.00105	0.027	11.8090	209.949	11.8110	299.999	0.0003	0.008	0.00060	0.015
-	9140	234	_	-	12.2047	309.999	12.2059	310.029	0.0013	0.033	-	-	12.2027	309.949	12.2047	309.999	0.0003	0.008	-	_
_	_	236	330	_	12 5984	319 999	12 5998	320 035	0.0015	0.038	_	_	12 5962	319 943	12 5984	319 999	0.0003	0.008	_	
_	9144	238	-	_	13.3858	339.999	13.3872	340.035	0.0015	0.038	_	_	13.3836	339.943	13.3858	339.999	0.0003	0.008	_	_
-	9146	240	-	-	14.1732	359.999	14.1746	360.035	0.0015	0.038	-	-	14.1710	359.943	14.1732	359.999	0.0003	0.008	-	-
_	-	242	336	-	14.9606	380.007	14.9620	380.035	0.0015	0.038	-	-	14.9584	379.943	14.9606	379.999	0.0003	0.008	-	-
-	9152	244	338	-	15.7480	399.999	15.7494	400.035	0.0015	0.038	-	-	15.7458	399.943	15.7480	399.999	0.0003	0.008	-	-
-	9156	246	340	-	16.5354	419.999	16.5370	420.040	0.0017	0.038	-	-	16.5329	419.936	16.5354	419.999	0.0004	0.010	-	-
-	-	248	342	-	17.3228	439.999	17.3244	440.040	0.0017	0.038	-	-	17.3203	439.936	17.3228	439.999	0.0004	0.010	-	-
	9160	250	344	-	18.1102	459.999	18.1118	460.040	0.0017	0.038	-	-	18.1077	459.936	18.1102	459.999	0.0004	0.010	-	
-	9164	252	-	-	18.8976	479.999	18.8992	480.040	0.0017	0.038	-	-	18.8951	479.936	18.8976	479.999	0.0004	0.010	-	-
-	-	256	348	-	19.6850	499.999	19.6866	500.040	0.0017	0.038	-	-	19.6825	499.936	19.6850	499.999	0.0004	0.010	-	-
-	-	260	352	-	21.2598	539.999	21.2615	540.042	0.0019	0.048	-	-	21.2571	539.930	21.2598	539.999	0.0004	0.010	-	-
	-	264	356	-	22.8346	579.999	22.8363	580.042	0.0019	0.048	-	-	22.8319	579.930	22.8346	579.999	0.0004	0.010	-	
-	9180	-	-	-	23.6220	599.999	23.6237	600.042	0.0019	0.048	-	-	23.6193	599.930	23.6220	599.999	0.0004	0.010	-	-

RADIAL BALL AND CYLINDRICAL **ROLLER BEARINGS**

These charts are guidelines for specifying shaft and housing fits related to particular operating conditions.

SHAFT

(For	Ball Bearing all nominal diar	s neters)	Operating Conditions	Examples			C	/lindrical Rolle (Except 5200	r Bearings Series)		
Lo	bads	Shaft			Lo	ads	Sł	naft	Shaft	S	haft
Lower Load Limit	Upper Load Limit	Tolerance Symbol			Lower Load Limit	Upper Load Limit	Dia	meter nm	Tolerance Symbol	Dia	ameter inch
				INNE	R RING STAT	ONARY					
0	C _e ⁽⁷⁾	g6	Inner ring to be easily displaced on shaft	Wheels Non-rotating shafts	0	C ⁽⁶⁾	All	g6	All		
0	C _e	h6	Inner ring does not need to be easily displaced	Tension pulleys	0	С	All	h6	All		
				INNER RING R	OTATING, OR	INDETERMINA	TE				
0	0.07C _e	j6	Light loads	Electrical apparatus Machine tools Pumps Ventilators Industrial trucks	0	0.08C	100 140 320 500	140 320 500 -	k6 ⁽⁴⁾ m6 ⁽⁵⁾ n6 p6	3.94 5.51 12.60 19.68	5.51 12.60 19.68 –
0.07C _e	0.15C _e	k5	Normal loads	Electrical motors Turbines Pumps Combustion engines Gear transmissions etc.	0.08C	a 0.18C	100 140 320 500	140 320 500 - 140	m6 n6 p6 r6 n6 ⁽³⁾	3.94 5.51 12.60 19.68 3.94	5.51 12.60 19.68 – 5.51
0.15C _e	C _e	m5	Heavy loads Shock loads	Rail vehicles Traction motors	0.18C	140 C	320 320 500	p6 ⁽³⁾ 500 -	5.51 r6 ⁽³⁾ r7 ⁽³⁾	12.60 12.60 19.68	19.68 -
	1				THRUST LOA	DS					
0	C.	i6 ⁽³⁾	Pure thrust loads	All			Not recor	mmended, consul	t Timken sales of	fice.	

(1) For solid shaft. See pages 18, 19, 20, and 21 for numerical values.
 (2) Use J5 for accurate applications.
 (3) Bearings with greater than nominal clearance must be used.
 (4) Use k5 for accurate applications.

 $^{(5)}$ Use m5 for accurate applications. $^{(6)}$ C = Dynamic Load Rating. $^{(7)}$ C_e = Extended Dynamic Load Rating (Ball Bearings).

HOUSING

		Operating Conditions	Examples Tolerence Symbol ⁽¹⁾	Housing Displaceable Axially	Outer Ring
			OUTER RING ROTATING		
	Heavy I	oads with thin-wall housing	Crane support wheels Wheel hubs (roller bearings) Crank bearings	Р6	No
	Normal	to heavy loads	Wheel hubs (ball bearings) Crank bearings	N6	No
	Light lo	ads	Conveyor rollers Rope sheaves Tension pulleys	M6	No
			INDETERMINATE LOAD DIRECTION		
	Heavy s	hock loads	Electric traction motors	M7	No
	Normal of outer	to heavy loads, axial displacement ring not required.	Electric motors Pumps Crankshaft main bearings	K6	no, normally
* Below this line, housing can either be one – piece	Light to of outer	normal loads, axial displacement ring desired.	Electric motors Pumps Crankshaft main bearings	J6	Yes, normally
or split; above this			OUTER RING STATIONARY		
line, a split housing is - not recommended.	Shock I	bads, temporary complete unloading	Heavy rail vehicles	J6	Yes, normally
	All loads	One-piece housing	General applications Heavy rail vehicles	H6	Easily
		Radially split housing	Transmission drives	H7	Easily
	Heat su	pplied through shaft	Dryer cylinders	G7	Easily

⁽¹⁾ Cast iron steel housing. See pages 22,23, 24 and 25 for numerical values. Where wider tolerances are permissible, P7, N7, M7, K7, J7 and H7 values may be used in place of P6, N6, M6, K6, J6, and H6 values respectively.

RADIAL SPHERICAL ROLLER BEARINGS

These charts are guidelines for specifying shaft and housing fits related to particular operating conditions.

SHAFT

	Conditions	Examples	Shaft Diameter mm	Tolerance Symbol	Remarks
		BEARINGS WITH STRAIGHT	BORE		
Stationary	The inner ring to be easily displaced on the shaft	Two-bearing shaft mechanism		s4	See table below for shaft size.
inner ring load	The inner ring not to	Wheel on non-rotating shaft	All diameters	g6	
Thig load	be easily displaced on the shaft	Tension pulleys and rope sheaves		h6	
Rotating inner ring load or indeterminate load direction	Light and variable loads $P \le 0.07C$ Normal and heavy loads P > 0.07C $\le 0.25C$	Electrical apparatus, machine tools, pumps, ventilators, industrial trucks Applications in general, electrical motors, turbines, pumps, combustion engines, gear transmissions, woodworking machines	Over Incl. 18 100 100 200 18 65 65 100 100 140 140 280 280 500 500 and up	k6 m6 m5 n6 p6 r6 r7	In very accurate applications k5 and m5 are used instead of k6 and m6 respectively.
	Very heavy loads and shock loads P > 0.25C	Journal boxes for locomotives and other heavy rail vehicles, traction motors BEARINGS WITH TAPERED BORE AND A	18 65 65 100 100 140 140 200 200 500	m6 n6 p6 r6 r7	Bearings with greater clearance than normal must be used.
	All loads	Applications in general	All diameters		See tables for Reduction of RIC on page 10

 $^{(1)}\mbox{For solid steel shaft.}$ See tables on pages 18, 19, 20, and 21 for numerical value.

s4 FITS

A centrifugal force load produces a rotating outer ring load and a stationary inner ring load, even though the inner ring rotates. This makes it desirable to fit the outer ring tight in the housing (using a P6 fit as shown on page 24), and the inner ring loose on the shaft using an s4 fit as listed in the table. The standard W33 bearing with oil groove and oil holes can be used.

Data shown in ten-thousandths of an inch (6=.0006") or thousandths of a millimeter (15=0.015 mm.). See dimensional tables for nominal bore.

s4 FITS

В	ore	v	ariance fron	Nominal Bore	
r Over	nm Incl.	Tolerence +0	Shaft Di max.	ameter min.	Fit
		in.	in.	in.	in.
		mm	mm	mm	mm
		-6	-10	-14	4L
50					14L
50	80	-15	-25	-36	10L
					36L
		-8	-13	-17	5L
	100				17L
80	120	-20	-33	-43	13L
					43L
		-10	-16	-21	6L
100	100				21L
120	180	-25	-41	-53	15L
					53L
		-12	-19	-25	7L
100	250				25L
180	200	-30	-48	-64	18L
					64L

SHAFT AND HOUSING FITS

RADIAL SPHERICAL ROLLER BEARINGS

This chart is a guideline for specifying housing fits for particular operating conditions.

HOUSING

	Co	nditions	Examples	Tolerance Symbol ⁽²⁾	Remarks
		Variable load direction	Two-bearing shaft mechanism	P6	
	Rotating outer	Heavy loads on bearings in thin walled housings	Supporting wheels in cranes, wheel hubs, crank bearings	P7	
One piece	ring load	Normal and heavy loads	Wheel hubs, crank bearings	N7	The outer ring is not displaceable axially
bearing housing		Light and variable loads	Conveyor rollers, rope sheaves, tension pulleys	M7	
		Heavy shock loads	Electrical traction motors		
	Indeterminate load direction	Heavy and normal loads, axial displacement of outer ring not required	Electrical motors, pumps, crankshaft main bearings	К7	The outer ring is, as a rule, not displaceable axially.
		Normal and light loads, axial displacement of the outer ring desirable	Electrical motors, pumps, crankshaft main bearings	J7	The outer ring is, as a rule,
Split or one		Shock loads, temporarily complete unloading	Journal boxes for rail vehicles		displaceable axially.
piece bearing housing	Stationary outer	All loads	Bearing applications in general, journal boxes for rail vehicles	H7	
	ring load	Normal and light loads, loads under simple operating conditions	Line shaftings	H8	The outer ring is easily displaced axially.
		Heat supplied through the shaft	Dryer cylinders	G7	
	Applications	Very accurate running and small deflections under variable loads	For main O.D. less than 125mm spindles O.D. 125 to 250 mm in machine O.D. over 250mm tools O.D. 125 to 250 mm	M6 N6 P6	The outer ring is not displaceable axially
One piece bearing housing	requiring particular accuracy	Very accurate running under light loads and indeterminate load direction	Held bearings in high speed centrifugal force compressors	K6	The outer ring is, as a rule, not displaceable axially.
		Very accurate running, axial displacement of outer ring desirable	Floating bearings in high speed centrifugal force compressors	J6	The outer ring is easily displaced axially.

⁽²⁾ Cast iron or steel housing. For numerical values see tables on pages 22, 23,24, and 25. For housings of light metal, tolerances generally are selected which give a slightly tighter fit than those given in the table.

RADIAL TAPERED ROLLER BEARINGS

Tolerences, shaft diameters and housing bores are shown as variances from the nominal bearing dimension. All data except nominal dimensions are in ten-thousandths of an inch (5=0.0005) and thousandths of a millimeter or micrometers (5=0.005mm).

Shaft and housing data shown in inches over millimeters.

SHAFT

Be	earing Bore			t1			t2			t3			t4			t5		
Norr (m	ninal in.)	Tol.	Shaft	Diam.		Shaf	t Diam.											
Over	Incl.	-0	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	max.	min.	Fit	
in	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
7.5000	12.0000	+10	+25	+15	5T				+10	+0	+10L	0	-10	0L	-2	-12	2L	
					25T		_				10T			20L			22L	For
190.500	304.800	+25	+64	+38	+13T				+25	0	25L	0	-25	0L	-5	-30	5L	Class 2 or
					64T						25T			51L			56L	Class 4
12.0000	24.0000	+20	+50	+30	+10T				+20	+0	20L	0	-20	0L				bearings
					50T		_				20T			40L		_		
304.800	609.600	+51	+127	+76	+25T				+51	+0	+51L	0	-51	OL				
					127T						51T			102L				
24.0000	36.0000	+30	+75	+45	15T	+150	+120	90T	+30	0	30L	0	-30	0L				For
					75T			150T			30T			60L		_		Class 4
609.600	914.400	+76	+191	+114	38T	+381	+305	229T	+76	0	76L	0	-76	0L				bearings
					191T			381T			76T			152L				only

HOUSING

Bearin	g O.D.			T1			T2			Т3			T4			T5		
Nom (mi	inal n.)	Tol.	Housi	ng Bore	Fit													
Over	Incl.	-0	max.	min.														
in	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	
10.5000	12.0000	+10	+20	+30	10L	+10	+20	0L	0	+20	10T	-20	-10	10T	-30	-20	20T	
					30L		-	20L			20L			30T			40T	For
266.700	304.800	+25	+51	+76	25L	+25	+51	0L	0	+51	25T	-51	-25	25T	-76	-51	51T	Class 2 or
					76L			51L			51L			76T			102T	Class 4
12.0000	24.0000	+20	+40	+60	20L	+20	+40	0L	+10	+30	10T	-30	-10	10T	-40	-20	20T	bearings
					60L		-	40L			30L			50T		-	60T	
304.800	609.600	+51	+102	+152	51L	+51	+102	0L	+25	+76	25T	-76	-25	25T	-102	-51	51T	
					152L			102L			76L			127T			152T	
24.0000	36.0000	+30	+60	+90	30L	+30	+60	0L	+20	+50	10T	-40	-10	10T				For
					90L			60L			50L			70T		—		Class 4
609.600	914.400	+76	+152	+114	76L	+76	+152	0L	+51	+127	25T	-102	-25	25T				bearings
					229L			152L			127L			178T				only

SHAFT

Shaft and housing diameter are shown in inches over millimeters with millimeters printed in red.

Mounting	Sorvico	Shaft Finish	Shaft D	iameter	Shaft
conditions	Service	Fillish	Over	Incl.	Symbol
Rotating Cone	Steady load moderate shock	Ground	7.5 190.5	36.0 914.0	t1
Rotating or	Heavy loads,	Ground or Turned	7.5 190.5	24.0 610.0	*
Stationary Cone	shock	Ground	24.0 610.0	36.0 914.0	t2
	Moderate loads,	Turned	7.5 190.5	36.0 914.0	t3
	TIO SHOCK	Ground	7.5	24.0	
Stationary Cone	Sheaves, wheels, etc.	Turned	7.5 190.5	36.0 914.0	t4
	Wheel spindles	Hardened	7.5 190.5	12.0 305.0	t5

HOUSING

Mounting	Service	Housing	Housing	
conditions	Service	Over	Incl.	Symbol
	Clamped or floating (TDO) styles	10.5 266.7	36.0 914.0	T1
Stationary Cup	Alternate clamp only (TDO, TDOC)	10.5 266.7	36.0 914.0	T2
	Adjustable	10.5 266.7	36.0 914.0	тз
Rotating Cup	Sheaves unclamped (TDOC)	10.5 266.7	24.0 160.0	Т5

*Use *Turned Shaft Fitting Practice, * an average cone interference fit of 0.0005 inches (0.013mm) per inch (25.4mm) of bore diameter.

TORRINGTON THRUST BALL BEARINGS

Shaft and housing diameters shown as variance from nominal dimensions. Shaft and housing data shown in inches over millimeters.

TYPE TVB SHAFT

Bearing Bore nominal (min.)		Sha	aft Diameter
Over	Incl.	Max.	Min.
in.	in.	in.	in.
mm	mm	mm	mm
0.0000	6.7500	+0	-0.0012
0.000	171.450	+0	-0.030
6.7500	20.0000	+0	-0.0015
171.450	508.000	+0	-0.038

TYPE TVL AND DTVL SHAFT

Bearing Bore		Shaft Diameter			
nomir	nal (max.)	Interferer	nce Fit*	Loos	e Fit**
Over	Incl.	Max.	Min.	Max.	Min.
in.	in.	in.	in.	in.	in.
mm	mm	mm	mm	mm	mm
0.0000	19.8750	+0.0030	+0	-0.0060	-0.0030
0.000	504.825	+0.076	+0	-0.152	-0.076
19.8750	60.0000	+0.0050	+0	-0.0100	-0.0050
504.825	1524.000	+0.127	+0	-0.254	-0.127

* Dowel pin suggested.

TYPE TP

** Dowel pin required.

HOUSING

Bearing O.D. nominal (max.)		Ηοι	using Bore
Over	Incl.	Max.	Min.
in.	in.	in.	in.
mm	mm	mm	mm
4.7188	17.3750	+0.0090	+0.0050
119.858	441.325	+0.229	+0.127
17.3750	39.3701	+0.0100	+0.0060
441.325	1000.000	+0.254	+0.152

IOUSING	6				
Bearin	Bearing O.D. nominal (min.)		Shaft Diameter Loose Fit** Interfere		
Over	Incl.	Max.	Min.	Max.	Min.
in.	in.	in.	in.	in.	in.
mm	mm	mm	mm	mm	mm
0.0000	23.0000	+0.0060	0.0030	-0.0060	-0.0030
0.000	584.000	+0.152	0.076	-0.152	-0.076
23.0000	70.0000	+0.0100	0.0050	-0.0100	-0.0050
584.000	1778.000	+0.254	0.127	-0.254	-0.127
Dowel pin sug	gested.	-!	** Dowel	pin required.	

TORRINGTON THRUST CYLINDRICAL ROLLER BEARINGS TYPE TP AND TPS

S	ŀ	I.	A	F	1	
S	h	I.	ρ		l	

Bearin	g Bore	Shaft D	iameter
Over	Incl.	Max.	Min.
in.	in.	in.	in.
mm	mm	mm	mm
1.8750	2.1250	-0.0010	-0.0020
47.625	53.975	-0.025	-0.051
2.1250	2.5000	-0.0011	-0.0021
53.975	63.500	-0.028	-0.053
2.5000	3.0000	-0.0012	-0.0022
63.500	76.200	-0.030	-0.056
3.0000	3.5000	-0.0012	-0.0023
76.200	88.900	-0.033	-0.058
3.5000	7.0000	-0.0015	-0.0025
88.900	177.800	-0.038	-0.064
7.0000	9.0000	-0.0015	-0.0030
177.800	228.600	-0.038	-0.076
9.0000	12.0000	-0.0018	-0.0330
228.600	304.800	-0.046	-0.084
12.0000	15.0000	-0.0020	-0.0035
304.800	381.000	-0.051	-0.089
15.0000	19.0000	-0.0020	-0.0040
381.000	482.600	-0.051	-0.102
19.0000	23.0000	-0.0025	-0.0045
482.600	584.200	-0.064	-0.114
23.0000`	30.0000	-0.0030	-0.0055
584.200	762.000	-0.076	-0.140

Bearin nomina	g O.D. I (min.)	Housin	g Bore
Over	Incl.	Max.	Min.
in.	in.	in.	in.
mm	mm	mm	mm
4.5312	10.0000	+0.0030	+0.0015
115.092	254.000	+0.076	+0.038
10.0000	18.0000	+0.0040	+0.002
254.000	457.200	+0.102	+0.051
18.0000	22.0000	+0.0050	+0.0025
457.200	558.800	+0.127	+0.064
22.0000	26.0000	+0.0055	+0.0025
558.800	660.400	+0.140	+0.064
26.0000	28.0000	+0.0060	+0.0030
660.400	711.200	+0.152	+0.076
28.0000	34.0000	+0.0070	+0.0030
711.200	863.600	+0.178	+0.076
34.0000	38.0000	+0.0080	+0.0035
863.600	965.200	+0.203	+0.089
38.0000	44.0000	+0.0090	+0.0040
965.200	1117.600	+0.229	+0.102

Note: Housing fits for Type TPS are on the following page.

TORRINGTON THRUST CYLINDRICAL ROLLER BEARINGS

Tolerances for housing bore and for shaft diameters shown as variance from nominal bearing dimension. Data shown in inches over millimeters

TYPE TPS

HO	USING	Deviations in 0.0001	inches/0.001	micrometers
----	-------	----------------------	--------------	-------------

Beari nomin	Bearing O.D. nominal (min.)		g Diameter ion from D
Over	Incl.	High	Low
in.	in.	in.	in.
mm	mm	mm	mm
2.0000	2.3750	+15	+5
50.800	60.325	+38	+13
2.3750	3.2500	+17	+7
60.325	82.550	+43	+18
3.2500	3.6875	+19	+9
82.550	93.663	+48	+23
3.6875	4.0000	+21	+11
93.663	101.600	+53	+28
4.0000	4.5312	+28	+13
101.600	115.092	+71	+33
4.5312	10.0000	+30	+15
115.092	254.000	+76	+38
10.0000	18.0000	+40	+20
254.000	457.200	+102	+51
18.0000	22.0000	+50	+25
457.200	558.800	+127	+64
22.0000	26.0000	+55	+25
558.800	660.400	+140	+64
26.0000	28.0000	+60	+30
660.400	711.200	+152	+76
28.0000	34.0000	+70	+30
711.200	863.600	+178	+76
34.0000	38.0000	+80	+35
863.600	965.200	+203	+89
38.0000	44.0000	+90	+40
965.200	1117.600	+229	+102

TORRINGTON THRUST TAPERED ROLLER BEARINGS

TYPE TTHD SHAFT

			Shaft Di	ameter
Bearing Bore nominal (min.)		Spring Loaded Max.+0	Rolling Mill Screwdown & Piercing Mill Thrust Blocks	
Over	Incl.	Min.	Max.	Min.
in.	in.	in.	in.	in.
mm	mm	mm	mm	mm
0.0000	6.8750	-0.0010	+0.0030	+0.0020
	174.625	-0.025	+0.076	+0.051
6.8750	7.9999	-0.0010	+0.0040	+0.0030
174.625	203.197	-0.025	+0.102	+0.076
7.9999	12.0000	-0.0015	+0.0050	+0.0040
203.197	304.800	-0.038	+0.127	+0.102
12.0000	24.0000	-0.0020	+0.0070	+0.0050
304.800	609.600	-0.051	+0.178	+0.127
24.0000	36.0000	-0.0025	+0.0095	+0.0070
609.600	914.400	-0.064	+0.241	+0.178
36.0000	48.0000	-0.0030	+0.0120	+0.0090
914.400	1219.200	-0.076	+0.304	+0.229

Bearin nomina	Bearing O.D. nominal (min.)		ng Bore
Over	Incl.	max.	min.
in.	in.	in.	in.
mm	mm	mm	mm
6.3750	10.5000	+0.0025	+0.0010
161.925	266.700	+0.064	+0.025
10.5000	13.0000	+0.0030	+0.0010
266.700	330.200	+0.076	+0.025
13.0000	20.0000	+0.0040	+0.0020
330.200	508.000	+0.102	+0.051
20.0000	25.0000	+0.0045	+0.0020
508.000	635.000	+0.114	+0.051
25.0000	30.0000	+0.0060	+0.0030
635.000	762.000	+0.152	+0.076
30.0000	35.0000	+0.0070	+0.0030
762.000	889.000	+0.178	+0.076

TYPE TTHD HOUSING

TORRINGTON THRUST TAPERED ROLLER BEARINGS

Tolerences for housing bore and shaft diameters shown as variance from nominal bearing dimension.

Data shown in inches over millimeters.

When one washer is piloted by the housing, sufficient clearances

TYPES TTV AND TTVF SHAFT

Bear nomi	ing Bore nal (min.)	Shaft Diameter Max. +O
Over	Íncl.	Min.
in.	in.	in.
mm	mm	mm
0.0000	12.0000	-0.0020
0.000	304.800	-0.051
12.0000	20.0000	-0.0020
304.800	508.000	-0.051
20.0000	28.0000	-0.0030
508.000	711.200	-0.076
28.0000	48.0000	-0.0040
711.200	1219.200	-0.102
48.0000	68.0000	-0.0050
1219.200	1727.200	-0.127

must be allowed at the outside diameter of the other washer as well as at the bore of both washers to prevent cross-threading of the rollers. For most applications, this clearance is approximately $\frac{1}{16}$ " (.0625", .1588mm).

HOUSING

Bearin	g Bore	Housi	ng Bore
Over	Incl.	max.	min.
in.	in.	in.	in.
mm	mm	mm	mm
6.3750	10.4375	+0.0025	+0.0010
161.925	265.113	+0.060	+0.025
10.3475	12.5000	+0.0030	+0.0010
265.113	317.500	+0.076	+0.025
12.5000	19.0000	+0.0040	+0.0020
317.500	482.600	+0.102	+0.051
19.0000	23.7500	+0.0045	+0.0020
482.600	603.250	+0.113	+0.051
23.7500	28.0000	+0.0060	+0.0030
603.250	711.200	+0.152	+0.076
28.0000	33.0000	+0.0070	+0.0030
711.200	838.200	+0.178	+0.076

TORRINGTON THRUST SPHERICAL ROLLER BEARING

Tolerances for housing bore and for shaft diameters shown as variance from nominal bearing dimension.

Data shown in inches over millimeters.

When application calls for thrust loads only, the housing must be relieved by $\gamma_{\rm 16}$ " on diameter so that no radial load is carried on the bearing.

SHAFT

SHAFI Tolerances are 1/10,000 of an inch (5 =.0005") and 1/1000 of a millimeter(μm)

Bearii	ng Bore		Shaft D	iameter	
nomin	al (max.)	Stationa	ary Load	Rotatin	g Load
ind	ches				
Over	Incl.	max.	min.	max.	min
in.	in.	in.	in.	in.	in.
mm	mm	mm	mm	mm	mm
3.1496	4.7244	+5	-4	+10	+1
80	120	+13	-10	+25	+3
4.7244	7.0866	+6	-4	+11	+1
120	180	+15	-10	+28	+3
7.0866	7.8740	+7	-5	+1	+2
180	200	+18	-13	+36	+5
7.8740	9.4488	+7	-5	+18	+6
200	240	+18	-13	+46	+15
9.4488	12.4016	+7	-6	+20	+8
240	315	+18	-15	+51	+20
12.4016	15.7480	+7	-7	+22	+8
315	400	+18	-18	+56	+20
15.7480	19.6850	+9	-7	+34	+18
400	500	+23	-18	+86	+46
19.6850	24.8031	+9	-8	+34	+17
500	630	+23	-20	+86	+43

HOUSING

Tolerances are 1/10,000 of an inch (5 =.0005") and 1/1000 of a millimeter(μm)

Bearin	ıg O.D.			Housin	g Bore		
nomina	ıl (max.)	Sprin	gs in	Com	bined Ax	ial &Rad	ial Load
inch	ies	Hou Light Lo	ising Radial bad	Static Outer	onary Ring	Rot Oute	ating r Ring
Over	Incl.	min.	max.	min.	max.	min.	max.
in.	in.	in.	in.	in.	in.	in.	in.
mm	mm	mm	mm	mm	mm	mm	mm
7.0866	9.8425	+6	+24	-7	+11	-13	+5
180	250	+15	+61	-18	+28	-33	+13
9.8425	12.4016	+7	+27	-7	+13	-14	+6
250	315	+18	+69	-18	+33	-36	+15
12.4016	15.7480	+7	+29	-7	+15	-16	+6
<u>315</u>	400	+18	+74	-18	+38	-41	+15
15.7480	19.6850	+8	+33	-9	+16	-18	+7
400	500	+20	+84	-23	+41	-46	+18
19.6850	24.8031	+9	+36	-9	+18	-19	+8
500	630	+23	+91	-23	+46	-48	+20
24.8031	31.4960	+9	+40	-9	+20	-20	+9
630	800	+23	+102	-23	+51	-51	+23
31.4960	39.3700	+10	+43	-10	+23	-23	+10
800	1000	+25	+109	-25	+58	-58	+25
39.3700	49.2126	+11	+48	-11	+26	-25	+12
1000	1250	+28	+122	-28	+66	-64	+30

SHAFT AND HOUSING FITS

Shaft and housing shoulder diameters for radial roller and thrust ball and thrust ball and roller bearings are also found in the respective dimension tables. Shaft and Housing shoulders for ball bearings are shown below.

FAFNIR RADIAL BALL BEARINGS

The preferred method of locating bearings on shafts and in housings is to provide accurate shoulders perpendicular to the shaft axis. Shoulders should be large enough to exceed the theoretical point of tangency between the corner radius and the face of the bearing, and small enough to permit bearing removal with proper pullers.

These tables give the recommended maximum and minimum shaft and housing shoulder diameters for the majority of applications. Where design limitations do not permit conformance to these recommended diameters, the Engineering department should be consulted.

Recommended shaft and housing fillet radii are listed in the dimensional tables of each product catalog and must be used to assure proper seating against shaft and housing shoulders.

Shaft and housing diameters for radial ball bearings are shown below and on the following two pages. For radial cylindrical, spherical and tapered roller bearings refer to the respective dimension tables. Housing shoulders for wide inner ring bearings are shown on page 44.

	EXTRA LIGHT 9300											
Basic Bearing Number	sh sho ±.0	naft ulder 10"	housing shoulder ±.010"									
	in.	mm	in.	mm								
9301K	0.58	14.7	0.85	21.6								
9302K	0.70	17.8	1.00	25.4								
9303K	0.78	19.8	1.08	27.4								
9304K	0.94	23.9	1.32	33.5								
9305K	1.14	29.0	1.52	38.6								
9306K	1.32	33.5	1.71	43.4								
9307K	1.56	39.6	2.00	50.8								
9308K	1.77	45.0	2.26	57.4								
9309K	1.98	50.3	2.49	63.2								
9310K	2.16	54.9	2.66	67.6								
9311K	2.40	61.0	2.94	74.7								
9312K	2.59	65.8	3.14	79.8								

			EXTR	A-SMALL	SERIES				
Basic Bearing		Shoulder Diameters shaft, S housing, H							
Number	ma	х.	m	in.	m	ax.		min	
	in.	mm	in.	mm	in.	mm	in.	mm	
33K3	0.20	5.1	0.19	4.8	0.32	8.1	0.31	7.9	
33K4	0.24	6.1	0.23	5.8	0.44	11.2	0.43	10.9	
33K5	0.26	6.6	0.25	6.4	0.44	11.2	0.43	10.9	
34K	0.26	6.6	0.25	6.4	0.56	14.2	0.55	14.0	
35K	0.37	9.4	0.36	9.1	0.67	17.0	0.66	16.8	
36K	0.37	9.4	0.36	9.1	0.67	17.0	0.66	16.8	
37K	0.44 11.2		0.42	10.7	0.79	20.1	0.77	19.6	
38K	0.45	11.4	0.43	10.9	0.79	20.1	0.77	19.6	
38KV	0.45	11.4	0.43	10.9	0.79	20.1	0.77	19.6	
39K	0.51	13.0	0.49	12.5	0.91	23.1	0.89	22.6	
S1K7	0.34	8.6	0.32	8.1	0.56	14.2	0.54	13.7	
S1K	0.37	9.4	0.35	8.9	0.69	17.5	0.67	17.0	
S3K	0.50	12.7	0.48	12.2	0.80	20.3	0.78	19.8	
S5K	0.63	16.0	0.61	15.5	0.99	25.1	0.97	24.6	
S7K	0.84	21.3	0.80	20.3	1.24	31.5	1.20	30.5	
S8K	0.97	24.6	0.93	23.6	1.46	37.1	1.40	35.6	
S9K	1.14	28.9	1.10	27.9	1.65	41.9	1.61	40.9	
S10K	1.24	31.5	1.20	30.5	1.84	46.7	1.80	45.7	
S11K	1.34	34.0	1.30	33.0	1.95	49.5	1.91	48.5	
S12K	1.55	39.4	1.51	38.4	2.20	55. 9	2.00	50.8	

SHAFT DESIGN – TORRINGTON NEEDLE BEARINGS

When the shaft is used as the inner raceway for needle roller bearings the following specifications must be met:

 metallurgy – either case hardening or through hardening grades of good bearing quality steel are satisfactory for raceways. Steels which are modified for free machining, such as those high in sulfur content and particularly those containing lead, are seldom satisfactory for raceways.

To realize full bearing capacity, the raceway area must be at least surface hard with a reasonable core strength. The preferred surface hardness is equivalent to 58 HRC. If the raceway is of lesser hardness, see the modification factors shown in Tables 2 and 3.

Shaft raceways for all needle roller bearings, in diameters up to 3.5 inches or 90mm should have an effective case depth of 0.030 inch or 0.8mm. (Effective case depth is defined as the distance from the surface, after final grinding, to the 50 HRC hardness level.) For raceways larger than 3.5 inches or 90 mm in diameter the effective case depth should be 0.050 inch or 1.3 mm.

- **2.** strength the shaft must be of sufficient size to keep the operating deflections within limits.
- **3. tolerance** the recommended shaft diameter tolerances for each type of needle roller bearing are indicated on the tabular pages.
- **4. taper** the taper within the length of the bearing raceway should not exceed 0.0003 inch (0.008 mm), or one-half the diameter tolerance, whichever is smaller.
- 5. out-of-roundness the radial deviation from true circular form of the raceway should not exceed .0001 inch (0.0025mm) for diameters up to and including 1.0 inch (25mm). For raceways greater than 1.0 inch or 25mm the allowable radial deviation may be greater than .0001 inch (0.0025mm) by a factor of raceway diameter (in inches) divided by 1.0 or a factor of raceway diameter (in mm) divided by 25.
- 6. surface finish the raceway finish should not exceed 8 microinches aa (arithmetic average) or 0,2 μm (on the Ra scale). In addition, the raceway area must be free of nicks, scratches and dents. Oil holes are permissible in the raceway area but care must be taken to blend the edges gently into the raceway.

Care must be taken to prevent grind reliefs, fillets, etc., from extending into the raceway area. If the rollers overhang a grind relief or step on the shaft, there will be high stress concentration with resultant early failure.

- 7. end chamfer for most effective assembly of the shaft into a bearing, the end of the shaft should have a large chamfer or rounding. This should help in preventing damage to the roller complement, scratching of the raceway surface and nicking of the shaft end.
- 8. sealing surface in some instances bearings have integral or immediately adjacent seals that operate on the surface ground for the bearing raceway. Here, particular attention should be paid to the pattern of the shaft finish. In no instance should there be a "lead", or spiral effect, as often occurs with through feed centerless grinding. Such a "lead" may pump lubricant past the seal.

When it is undesirable or impractical to prepare the shaft to be used as a raceway, inner rings are available as listed in the tabular pages. If the shaft is not used directly as a raceway, the following design specifications must be met:

- 1. strength the shaft must be of sufficient size to keep the operating deflections within limits.
- **2. tolerance** the recommended shaft diameter tolerances for mounting inner rings are indicated on the tabular pages.
- **3. taper and out-of-roundness** the taper and out-of-roundness should not exceed one-half the shaft diameter tolerance.
- 4. surface finish the surface finish should not exceed 125 microinches, aa (arithmetic average) or $3.2 \ \mu$ m (on the Ra scale).
- 5. locating shoulders or steps locating shoulders or steps in the shaft must be held to close concentricity with the bearing seat to prevent imbalance and resultant vibrations.

HOUSING DESIGN - TORRINGTON NEEDLE BEARINGS

BEARINGS WITH OUTER RINGS

For bearings with outer rings the function of the housing is to locate and support the outer ring. The following specifications must be met:

1. strength – housings should be designed so that the radial loads which will be placed on the bearings will cause a minimum of deflection or distortion of the housing.

2. tolerance – the recommended housing bore tolerances for each type of needle roller bearing are indicated on the tabular pages.

3. taper – the taper within the length of the outer ring should not exceed .0005 inch (0.013 mm).

4.out-of-roundness – the housing bore should be round within one-half the housing bore diameter tolerance.

5. parallelism – when possible, line bore housings which are common to one shaft to obtain parallelism of the housing bores and the shaft axis.

6. surface finish – the surface finish of housing bore should not exceed 125 microinches, aa (arithmetic average) or 3.2 μm (on the Ra scale).

7. end chamfer – to permit easy introduction of the bearing into the housing, the end of the housing should have a generous chamfer.

Heavy duty roller bearings can be installed into housings with a transition fit or a clearance fit. The outer ring should be a transition fit in the housing when it rotates relative with the load. The outer ring may be a clearance fit in the housing when it is stationary relative to the load.In either case, locate the bearings by shoulders, or other locating devises, to prevent axial movement.

Since the heavy duty roller bearing does not require an interference fit in the housing to round and size it properly, a split housing may be used if desired. Dowels should be used to maintain proper register of the housing sections.

Drawn cup bearings have a thin case-hardened outer ring which is out-of-round from the hardening operation. For proper mounting it must always be pressed into the housing. Split housing will not round and size a drawn cup bearing. When split housings must be used, the bearing should first be mounted in a cylindrical sleeve. The housing should be of sufficient tensile strength and section to round and size the bearing. It must be designed for minimum distortion under load. Steel or cast iron housings are preferred. Housing bores in low tensile strength materials such as aluminum, magnesium, phenolics, etc., should be reduced to provide more interference fit. Thin section cast iron and steel housings may also require reduced bores. Consult The Timken Company for recommendations when working with these lower strength housings.

The housing should be through bored if possible. When shouldered housing bores are unavoidable, the bearing should be located far enough from the shoulder to avoid the danger of crushing the end of the drawn cup during installation.

When the drawn cup bearing is mounted close to the housing face, care should be taken to mount the bearing at least 0.008 inch (0.20 mm) within the housing face to protect the bearing lip.

BEARINGS WITHOUT OUTER RINGS

In many cases, such as with gear bores, it is desirable to have the housing bore serve as the outer raceway for caged needle roller assemblies or loose needle roller complements. In those instances, the following specifications must be met:

- strength the housing must be of sufficient cross section to maintain proper roundness and running clearance under the maximum load.
- metallurgical material selection, hardness and case depth should be consistent with the requirements for inner raceways given in the SHAFT DESIGN recommendations on page 40.
- taper and out-of-roundness the raceway out-of-roundness and taper should not exceed 0.0003 inch (0.008 mm) or one-half the bore tolerance, whichever is smaller. In addition, the bore diameter must never be smaller at both ends than in the center (sway-back).
- surface finish the raceway surface finish should not exceed 8 microinches, aa (arithmetic average) or 0.2 μm (on the Ra scale). In addition, the surface must be free of nicks, dents and scratches.
- 5. grind reliefs care must be exercised to ensure that grind reliefes, fillets, etc. do not extend to the raceway. Oil holes in the raceway area are permissible but the edges must be blended smoothly with the raceway.

SHAFT AND HOUSING SHOULDERS

FAFNIR RADIAL BALL BEARINGS

		E	xtra-Li	ght • 91	00 Ser	ies			Light • 200, 5200, 7200WN Series								Mediu	ım • 30	0, 5300	, 7300V	VN Seri	es				
Basic				Shoulde	r Diame	ters			Basic	;		S	houlder l	Diamete	s			Basic			S	houlder	Diamete	ers		
Bearing	m	sha av	ft, S	nin	m	hous	sing, H	in	Bear	ing hor m	sh	aft, S	in	m	housi	ng, H	in	Beari	ng or ma	shaft	, S mi	n	n	hous	ing, H	in
	in	mm	in	mm	in	mm	in	mm	Ivairi	in	mm	in	mm	in	mm	in	mm	Tearris	in	mm	in	mm	in	mm	in	mm
	0.50	10.0	0.47	11.0	0.05	24.1	0.01	00.1	000	0.57	14.0	0.50	10.7	0.00	24.0	0.07	24.4	000	0.50	15.0	0.50	10.7	1 10	20.0	1.15	20.0
9100	0.52	13.2	0.47	11.9	1.02	24.1	0.91	23.1	200	0.56	14.2	0.50	12.7	1.04	24.9	1.05	24.0	300	0.59	15.0	0.50	12.7	1.18	30.0	1.15	29.2
9101	0.71	10.0	0.55	17.0	1.02	20.7	1 1 2	24.0	201	0.04	10.5	0.50	14.7	1.00	30.0	1.05	20.7	302	0.07	20.6	0.05	10.0	1.22	31.0	1.21	35.6
9102	0.75	20.6	0.07	19.0	1.10	33.0	1.15	31.8	202	0.75	21.3	0.07	19.6	1.10	34.0	1 31	27.2	303	0.01	20.0	0.73	21.1	1.42	40.9	1.40	40.6
9104	0.98	24.9	0.89	22.6	1.46	37.1	1.41	35.8	204	1.00	25.4	0.94	23.9	1.61	40.9	1.58	40.1	304	1.06	26.9	0.94	23.9	1.77	45.0	1.75	44.4
9105	1.18	30.0	1.08	27.4	1.65	41.9	1.60	40.6	205	1.22	31.0	1.14	29.0	1.81	46.0	1.78	45.2	305	1.31	33.3	1.14	29.0	2.17	55.1	2.09	53.1
9106	1.38	35.1	1.34	34.0	1.93	49.0	1.88	47.8	206	1.47	37.3	1.34	34.0	2.21	56.1	2.10	54.9	306	1.50	39.0	1.34	34.0	2.56	05.0	2.44	62.0
9107	1.03	41.4	1.53	38.9	2.21	20.1	2.15	04.0 40.7	207	1.72	43.7	1.53	38.9	2.00	00.0	2.47	02.7	200	1.78	40.2	1.09	42.9	2.80	/ I. I 01.0	2.12	09.1 777
9100	2.03	40.0 51.6	1.73	43.9	2.44	60.1	2.39	67.8	200	2.12	49.3 5/1.1	1.73	43.9	2.07	72.9	2.70	70.0	300	2.00	57.0	2.13	49.0 54.1	3.19	01.0	3.00	86.6
5105	2.05	51.0	1.74	47.5	2.72	07.1	2.07	07.0	203	2.15	34.1	1.74	47.5	5.07	70.0	2.77	75.4	303	2.20	57.7	2.15	34.1	5.50	70.7	3.41	00.0
9110	2.22	56.4	2.13	54.1	2.91	73.9	2.86	72.6	210	2.34	59.4	2.13	54.1	3.27	83.1	3.17	80.5	310	2.50	63.5	2.36	59.9	3.94	100.1	3.75	95.2
9111	2.48	63.0	2.33	59.2	3.27	83.1	3.22	81.8	211	2.54	64.5	2.41	61.2	3.68	93.5	3.56	90.4	311	2.75	69.8	2.56	65.0	4.33	110.0	4.13	104.9
9112	2.67	67.8	2.53	64.3	3.47	88.1	3.42	86.9	212	2.81	/1.4	2.67	67.8	3.98	101.1	3.87	98.3	312	2.94	/4./	2.84	72.1	4.65	118.1	4.44	112.8
9113	2.84	72.1	2.72	09.1 72.0	3.00	93.0	3.01	81.7 100.0	213	3.03	01.0	2.80	12.0 77 7	4.37	111.0	4.19	106.4	313	3.19	81.0	3.03	11.0	5.04	128.0	4.81	122.2
9114	3.11	79.0	2.91	73.9	4.00	103.1	3.97	100.8	214	3.22	81.8	3.00	11.1	4.57	110.1	4.41	112.0	314	3.44	87.4	3.23	82.0	5.43	137.9	5.13	130.3
9115	3.31	84.1	3.11	79.0	4.25	108.0	4.16	105.7	215	3.44	87.4	3.25	82.6	4.76	120.9	4.59	116.6	315	3.88	98.6	3.43	87.1	5.83	148.1	5.50	139.7
9116	3.56	90.4	3.31	84.1	4.65	118.1	4.50	114.3	216	3.69	93.7	3.55	90.2	5.12	130.0	4.93	125.2	316	3.94	100.1	3.62	91.9	6.22	158.0	5.88	149.4
9117	3.75	95.2	3.50	88.9	4.84	122.9	4./1	119.6	217	3.88	98.6	3.75	95.2	5.51	140.0	5.31	134.9	317	4.13	104.9	3.90	99.1	6.54	166.1	6.19	157.2
9118	4.03	102.4	3.84	97.5	5.16	131.1	5.13	130.3	218	4.16	105.7	3.94	100.1	5.91	150.1	5.62	142.7	318	4.38	111.3	4.09	103.9	6.93	1/6.0	6.50	165.1
9120	4.38	111.3	4.23	107.4	5.55	141.0	5.44	138.2	219	4.38	111.3	4.21	100.9	0.22	158.0	0.00	103.9	319	4.03	117.0	4.29	109.0	1.32	180.9	0.88	174.8
9121	4.66	118.4	4.53	115.1	5.91	150.1	5.75	146.0	220	4.63	117.6	4.41	112.0	6.61	167.9	6.31	160.3	320	4.88	124.0	4.49	114.0	7.91	200.9	7.38	187.4
9122	4.91	124.7	4.72	119.9	6.30	160.0	6.18	157.0	221	4.88	124.0	4.61	117.1	7.01	178.1	6.88	174.8	321	5.13	130.3	4.69	119.1	8.31	211.1	7.75	196.8
9124	5.28	134.1	5.12	130.0	6.69	169.9	6.50	165.1	222	5.13	130.3	4.80	121.9	7.40	188.0	7.06	179.3	322	5.50	139.7	4.88	124.0	8.90	226.1	8.25	209.6
9126	5.81	147.6	5.51	140.0	7.48	190.0	7.25	184.1	224	5.63	143.0	5.20	132.1	7.99	202.9	7.56	192.0	324	6.00	152.4	5.28	134.1	9.69	246.1	8.93	226.8
9128	6.06	153.9	5.81	147.6	7.88	200.2	7.68	195.1	226	6.00	152.4	5.67	144.0	8.50	215.9	8.13	206.5	326	6.44	163.6	5.83	148.1	10.32	262.1	9.69	246.1
9130	6.59	167.4	6.38	162.1	8.39	213.1	8.13	206.5	228	6.50	165.1	6.06	153.9	9.29	236.0	8.81	223.8	328	6.93	176.0	6.22	158.0	11.10	281.9	10.38	263.7
9132	6.96	176.8	6.56	166.6	9.00	228.6	8.75	222.2	230	6.97	177.0	6.46	164.1	10.08	256.0	9.50	241.3	330	7.44	189.0	6.61	167.9	11.89	302.0	11.06	280.9
9134	7.56	192.0	7.17	182.1	9.76	247.9	9.44	239.8	232	7.36	186.9	6.85	174.0	10.87	276.1	10.25	260.4	332	7.84	188.0	7.01	178.0	12.68	322.1	11.58	294.1
9138	8.38	212.9	7.95	201.9	10.95	278.1	10.50	266.7	234	7.98	202.7	7.40	188.0	11.50	292.1	10.88	276.4	334	8.40	213.4	7.40	188.0	13.47	342.1	12.27	311.7
9140	8.84	224.5	8.35	212.1	11.73	297.9	11.22	285.0	236	8.38	212.9	7.80	198.1	11.89	302.0	11.09	281.7	336	8.80	223.5	7.80	198.1	14.25	362.0	13.05	331.5
9144	9.70	246.4	9.21	233.9	12.84	326.1	12.24	310.9	238	8.77	222.8	8.19	208.0	12.68	322.1	11.88	301.8	338	9.35	237.5	8.35	212.1	14.89	378.2	13.59	345.2
9148	10.50	266.7	10.00	254.0	13.62	345.9	13.02	330.7	240	9.42	239.3	8.58	217.9	13.47	342.1	12.57	319.3	340	9.84	249.9	8.74	222.0	15.67	398.0	14.37	365.0
9152	11.49	291.8	10.95	278.1	15.04	382.0	14.44	366.8	242	9.69	246.1	8.87	225.3	14.26	362.2	13.26	336.8	342	10.24	260.1	9.14	232.2	16.47	418.3	15.17	385.3
9156	12.33	313.2	11.73	297.9	15.83	402.1	15.23	386.8	244	10.14	257.6	9.37	238.0	15.04	382.0	14.04	356.6	344	10.73	272.5	9.53	242.1	17.24	437.9	15.96	405.4
9160	13.36	339.3	12.52	318.0	17.40	442.0	16.60	421.6	246	10.58	268.7	9.76	247.9	15.83	402.1	14.60	370.8	348	11.52	292.6	10.32	262.1	18.82	478.0	17.32	439.9
9164	14.19	360.4	13.31	338.1	18.19	462.0	17.39	441.7	248	11.16	283.5	10.16	258.1	16.61	421.9	15.18	385.6	352	12.54	318.5	11.34	288.0	20.16	512.1	18.66	474.0
9180	18.00	457.2	17.00	431.8	22.12	561.8	21.62	549.1	250	11.55	293.4	10.55	268.0	17.40	442.0	15.70	398.8	356	13.43	341.1	12.13	308.1	21.73	551.9	20.13	511.3
3100	10.00	-131.Z	17.00	-131.0	22.12	301.0	21.02	547.1	200	11.55	273.4	10.55	200.0	17.40	442.0	13.70	370.0	333	13.43	341.1	12.13	300.1	21.73	331.7	20.13	011.0

SHAFT AND HOUSING SHOULDERS

FAFNIR RADIAL BALL BEARINGS

Basic	sha	ft, S	housi	ing, H	
Number	max.	min.	max.	min.	
	in	in.	in	in.	
	mm	mm	mm	mm	
7405	1.47	1.34	2.80	2.63	
	37.3	34.0	71.1	66.8	
7406	1.72	1.54	3.19	3.00	
	43.7	39.1	81.0	76.2	
7407	1.93	1.73	3.58	3.38	
	49.0	43.9	90.9	85.9	
7408	2.19	1.97	3.94	3.69	
	55.6	50.0	100.1	93.7	
7409	2.44	2.17	4.33	4.00	
	62.0	55.1	110.0	101.6	
7410	2.69	2.44	4.65	4.38	
	68.3	62.0	118.1	111.3	

Heavy • 7400 Series (Continued)									
Basic	shaft	t, S	housi	ng, H					
Number	max.	min.	max.	min.					
	in	in.	in	in.					
	mm	mm	mm	mm					
7411	2.93	2.64	5.04	4.75					
	74.4	97.1	128.0	120.7					
7412	3.19	2.84	5.43	5.13					
	81.0	72.1	137.9	130.3					
7413	3.50	3.03	5.83	5.50					
	88.9	77.0	148.1	139.7					
7414	3.69	3.31	6.54	6.13					
	93.7	84.1	166.1	155.7					
7415	3.93	3.50	6.93	6.44					
	99.8	88.9	176.0	163.6					
7416	4.13	3.70	7.32	6.81					
	104.9	94.0	185.9	173.0					
7418	4.69	4.25	8.15	7.75					
	119.1	108.0	207.0	196.9					
7420	5.17	4.72	9.21	8.79					
	131.3	119.9	233.9	223.3					

Non-Standard Extra-Large

Mechani-Seal KL, KLD, KLL Types

	Non-Standard Extra-Large												
Basic				Shoulder	Diameters	6							
Bearing		sh	aft, S			hous	ing, H						
Number	n	nax.	m	nin.	ma	ax.	m	in					
	in.	mm	in.	mm	in.	mm	in.	mm					
120W2	4.63	117.6	4.40	111.8	5.91	150.1	5.75	146.0					
122W	4.91	124.7	4.73	120.1	6.41	162.8	6.25	158.8					
124W	5.28	134.1	5.12	130.0	7.01	178.1	6.87	174.5					
126W	5.82	147.8	5.50	139.7	7.60	193.0	7.31	185.7					
128W	6.19	157.2	5.91	5.91 150.1		207.8	7.96	202.2					
130W	6.59	167.4	6.38	162.1	8.78	223.0	8.51	216.2					
132W	7.44	189.0	6.85	174.0	9.24	234.7	8.81	223.8					
134W	7.52	191.0	7.29	185.2	9.83	249.7	9.61	244.1					
136W	8.00	203.2	7.69	195.3	10.42	264.7	10.15	257.8					
138W	8.44	214.4	8.08	205.2	11.21	284.7	10.87	276.1					
224W	5.63	143.0	5.20	132.1	8.00	203.2	7.56	192.0					
226	6.00	152.4	5.67	144.0	8.50	215.9	8.13	206.5					
228	6.50	165.1	6.06	153.9	9.29	236.0	8.81	223.8					
276-2	15.82	401.8	15.75	400.1	18.25	463.6	18.17	461.5					

Housing shoulder diameters of bearings with Mechani-Seals differ slightly from those of other types to allow for clearance between the external rotating member of the seal and the housing shoulder.

	Mechani-Seal KL, KLD, KLLTypes											
Basic Bearing		housing diam	l shoulder neter,H									
Number	ma	x.	m	in.								
	in.	mm	in.	mm								
36	0.67	17.0	0.66	16.8								
36V	0.67	17.0	0.66	16.8								
37	0.79	20.1	0.77	19.6								
37V	0.79	20.1	0.77	19.6								
34	0.79	20.1	0.77	19.6								
38V	0.79	20.1	0.77	19.6								
39	0.91	23.1	0.89	22.6								
39V	0.91	23.1	0.89	22.6								
200	1.09	27.7	1.03	26.2								
201	1.16	29.5	1.09	27.7								
201–2	1.16	29.5	1.09	27.7								
201-3	1.16	29.5	1.09	27.7								
202	1.28	32.5	1.22	31.0								
202-2	1.28	32.5	1.22	31.0								
202–3	1.28	32.5	1.22	31.0								
202–4	1.28	32.5	1.22	31.0								
203	1.44	36.6	1.41	35.8								
204	1.72	43.7	1.62	41.1								
204-2	1.72	43.7	1.62	41.1								
205	1.91	48.5	1.84	46.7								
205–2	1.91	48.5	1.84	46.7								
206	2.28	57. 9	2.22	56.4								
207	2.66	67.6	2.53	64.3								
208	2.97	75.4	2.81	71.4								
209	3.16 80.3	80.3	3.03	77.0								
209–2	6.16	80.3	3.03	77.								
211	3.69	93.7	3.56	90.4								

SHAFT AND HOUSING SHOULDERS

FAFNIR WIDE INNER RING BALL BEARINGS

When shafts are selected for use with wide inner ring bearings, a minimum slip fit is very desirable for the most satisfactory mounting. Special shaft limits are required in certain cases, and a variety of standard fits can be used, even including a press fit. The recommended figures are noted below. In some applications it may be permissable to use increased shaft tolerances. In such cases, applications should be forwarded to our The Timken Company for complete recommendations.

Bearing bore tolerance: ½" - 2 ¾s" = nominal to +.0005, + .013mm; 2 ¼" - 3 ¾s" = nominal to +.0006",+.015mm; 3 ⅔s" - 115¼s" = nominal to +.0007",+.018mm Recommended shaft tolerances: ½" - 1 ⅛s" = nominal to -.0055", -.013mm; 2" - 3 ½s" = nominal to -.0010", -.025mm.

HOUSING, SHOULDERS AND SHAFT DIAMETERS

	I	BearingNumber			Shaft	Basic	Housi	ng Statio	hary ⁽¹⁾	Shoulder	
KRR	G-KRR	RA-RR	GRA-RR	GYA-RR*	Size	Ring	Housing	Bore D	mean fit	Dian	neter H
Type	Type	Type	Type	Туре		Size	min.	max	loose	max.	min.
					in.		in.	in.	in.	in.	in.
					mm		mm	mm	mm	mm	mm
1008600	_	PAGORP	CRAMSPR	CYA0008PP	1/.						
		PADOORR	CRADORR	GYA000PP	9/	202					
1010KPP(KP)	G1010KRR	RA010RR	GRA010RR	GYA010RR	5/0	205	1.5748	1.5754	0.0005	1.37	1.34
1011KPP	G1011KPP	RAUTORR	GRAUTURR	GTAUTURK	11/2		40.000	40.015	0.013	34.8	34.0
E17KDD	GE17KPP		CDAE17DD	CVAE17PP	17						
LITAKK	GEITARA	KALITAK	GRAET/RR	GTALITAK	17						
1012KRR(KR)	G1012KRR	RA012RR	GRA012RR	GYA012RR	3/4	204	1.8504	1.8510	0.0005	1.61	1.60
E20KRR	GE20KRR	RAE20RR	GRAE20RR	GYAE20RR	20		47.000	47.015	0.013	40.9	40.6
1013KRR	-	RA013RR	GRA013RR	GYA013RR	13/16						
1014KRR	G1014KRR	RA014RR	GRA014RR	GYA014RR	7/8	205	2.0.470	2.0.170	0.000/	1.01	1.00
1015KRR(KR)	G1015KRR	RA015RR	GRA015RR	GYA015RR	¹⁵ / ₁₆		2.0472	2.0479	0.0006	1.81	1.80
1100KRR(KR)	G1100KRR	RA100RR	GRA100RR	GYA100RR	1		51.777	52.017	0.015	40.0	43.7
E25KRR	GE25KRR	RAE25RR	GRAE25RR	GYAE25RR	25						
_	G1101KRR	RA101RR	GRA101RR	GYA101RR	11/16						
1102KRR(KR)	G1102KRR	RA102RR	GRA102RR	GYA102RR	11/8	206					
1103KRR(KR)	G1103KRR	RA103RR	GRA103RR	GYA103RR	13/16		2.4409	2.4416	0.0006	2.21	2.16
-	_	_	_	GYA103RR2	11/4		61.999	62.017	0.015	56.1	54.9
E30KRR	GE30KRR	RAE30RR	GRAE30RR	GYAE30RR	30						
	CHANKER	DA404DD	CRAAADD	CVA404PP	11/						
1104KKK(KK)	GII04KKK	RA 104KK	GRA104RR	GTAT04RR	174	207					
1105KKK	- C1106KPP	RA105RR	CRAIOSKK	GTATUSKK GVA106PP	1 716	207	2.8346	2.8353	0.0006	2.21	2.16
1100KKK	G1100KKK	RATUORK	CRAIOGR	GTATUORK GVA107PP	178		71.999	72.017	0.015	56.1	54.9
	GE25KPP		CRAE25PR	GTATU/RK	1 /16						
LJJKKK	GESSKKK	KALJJKK	GRAESSKK	GTALSSKK							
1108KRR(KR)	G1108KRR	RA108RR	GRA108RR	GYA108RR	11/2	208	3,1496	3,1503	0.0006	2.87	2.78
-	-	RA106RR	GRA109RR	GYA109RR	1%16		80.000	80.018	0.015	72.9	70.6
-	-	-	GRAE40RR	GYAE40RR	40						
1110KRR	G1110KRR	RA110RR	GRA110RR	GYA110RR	15/8						
1111KRR(KR)	G1111KRR	RA111RR	GRA111RR	GYA111RR	111/16	209	3.3465	3.3474	0.0008	3.07	2.97
1112KRR(KR)	G1112KRR	RA112RR	GRA112RR	GYA112RR	1 ³ / ₄		85.001	85.024	0.020	78.0	75.4
E45KRR	-	-	GRAE45RR	GYAE45RR	45						
_	_	RA113RR	GRA113RR	GYA113RR	113/16						
1114KRR	-	RA114RR	GRA114RR	GYA114RR	11/8	210					
1115KRR(KR)	G1115KRR	RA115RR	GRA115RR	GYA115RR	115/16		3.5433	3.5442	8000.0	3.27	3.19
-	-	_	GRA115RR2	_	2		90.000	90.023	0.020	83.1	81.0
E50KRR	GE50KRR	RAE50RR	GRAE50RR	GYAE50RR	50						
1200KRR(KR)	G1200KRR	RA200RR	GRA200RR	GYA200RR	2						
-	-	RA201RR	GRA201RR	GYA201RR	21/16	211					
1202KRR	_	RA202RR	GRA202RR	GYA202RR	21/8		3.9370	3.9379	8000.0	3.58	3.56
1203KRR(KR)	G1203KRR	RA203RR	GRA203RR	GYA203RR	2 ³ /16		100.000	100.023	0.020	90.9	90.4
E55KRR	GE55KRR	RAE55RR	GRAE55RR	GYAE55RR	55						
1204600					21/.						
	- C1207KBB	_	_	-	274	212	4.3307	4.3316	8000.0	3.98	3.87
ECOKPP	GIZU/KKK	_	_	-	2716		110.000	110.023	0.020	101.1	98.3
LOUNKK	GEOUKKK	-	-	-	00						
1215KRR	-	-	-	-	215/16	215	5.1181	5.1191	0.0009	4.76	4.59
E75KRR	-	-	-	-	75		130.000	130.025	0.023	120.9	116.6

(1) When the housing revolves in relation to the shaft, housing bore dimensions shown on page 33 should be used. Outer ring tolerances and housing fillet radii correspond to equivalent 200 Series single row radial bearings.

ISO BORE TOLERANCES-MILLIMETERS

Nominal Diameters Over Incl.		F7		G7		H8		N6		N7		R6		R7	
		high	low	high	low	high	low	high	low	high	low	high	low	high	low
6	10	+0.028	+0.013	+0.020	+0.005	+0.022	0	-0.007	-0.016	-0.004	-0.019	-0.016	-0.025	-0.013	-0.028
10	18	+0.034	+0.016	+0.024	+0.006	+0.027	0	-0.009	-0.02	-0.005	-0.023	-0.020	-0.031	-0.016	-0.034
18	30	+0.041	+0.020	+0.028	+0.007	+0.033	0	-0.011	-0.024	-0.007	-0.028	-0.024	-0.037	-0.020	-0.041
30	50	+0.050	+0.025	+0.034	+0.009	+0.039	0	-0.012	-0.028	-0.008	-0.033	-0.029	-0.045	-0.025	-0.050
50	65	+0.060	+0.030	+0.040	+0.010	+0.046	0	-0.014	-0.033	-0.009	-0.039	-0.035	-0.054	-0.030	-0.060
65	80	+0.060	+0.030	+0.040	+0.010	+0.046	0	-0.014	-0.033	-0.009	-0.039	-0.037	-0.056	-0.032	-0.062
80	100	+0.071	+0.036	+0.047	+0.012	+0.054	0	-0.016	-0.038	-0.010	-0.045	-0.044	-0.066	-0.038	-0.073
100	120	+0.071	+0.036	+0.047	+0.012	+0.054	0	-0.016	-0.038	-0.010	-0.045	-0.047	-0.069	-0.041	-0.076
120	140	+0.083	+0.043	+0.054	+0.014	+0.063	0	-0.020	-0.045	-0.012	-0.052	-0.056	-0.081	-0.048	-0.088
140	160	+0.083	+0.043	+0.054	+0.014	+0.063	0	-0.020	-0.045	-0.012	-0.052	-0.058	-0.083	-0.050	-0.090
160	180	+0.083	+0.043	+0.054	+0.014	+0.063	0	-0.020	-0.045	-0.012	-0.052	-0.061	-0.086	-0.053	-0.093
180	200	+0.096	+0.050	+0.061	+0.015	+0.072	0	-0.022	-0.051	-0.014	-0.060	-0.068	-0.097	-0.060	-0.106
200	225	+0.096	+0.050	+0.061	+0.015	+0.072	0	-0.022	-0.051	-0.014	-0.060	-0.071	-0.100	-0.063	-0.109
225	250	+0.096	+0.050	+0.061	+0.015	+0.072	0	-0.022	-0.051	-0.014	-0.060	-0.075	-0.104	-0.067	-0.113

ISO SHAFT TOLERANCES-MILLIMETERS

Nominal		f5		f6		h5		h6		j6		m6	
Over	Incl.	high	low	high	low	high	low	high	low	high	low	high	low
3	6	-0.010	-0.015	-0.010	-0.018	0	-0.005	0	-0.008	+0.006	-0.002	+0.012	+0.004
` 6	10	-0.013	-0.019	-0.013	-0.022	0	-0.006	0	-0.009	+0.007	-0.002	+0.015	+0.006
10	18	-0.016	-0.024	-0.016	-0.027	0	-0.008	0	-0.011	+0.008	-0.003	+0.018	+0.007
18	30	-0.020	-0.029	-0.020	-0.033	0	-0.009	0	-0.013	+0.009	-0.004	+0.021	+0.008
30	50	-0.025	-0.036	-0.025	-0.041	0	-0.011	0	-0.016	+0.011	-0.005	+0.025	+0.009
50	80	-0.030	-0.043	-0.030	-0.049	0	-0.013	0	-0.019	+0.012	-0.007	+0.030	+0.011
80	120	-0.036	-0.051	-0.036	-0.058	0	-0.015	0	-0.022	+0.013	-0.009	+0.035	+0.013
120	180	-0.043	-0.061	-0.043	-0.068	0	-0.018	0	-0.025	+0.014	-0.011	+0.040	+0.015

ISO BORE TOLERANCES - INCH

Nominal		F7		G7		H8		N6		N7		R6		R7	
Over	Incl.	high	low	high	low	high	low	high	low	high	low	high	low	high	low
0.2362	0.3937	+0.0011	+0.0005	+0.0008	+0.0002	+0.0009	0	-0.0003	-0.0006	-0.0002	-0.0007	-0.0006	-0.001	-0.0005	-0.0011
0.3937	0.7087	+0.0013	+0.0006	+0.0009	+0.0002	+0.0011	0	-0.0004	-0.0008	-0.0002	-0.0009	-0.0008	-0.0012	-0.0006	-0.0013
0.7087	1.1811	+0.0016	+0.0008	+0.0011	+0.0003	+0.0013	0	-0.0004	-0.0009	-0.0003	-0.0011	-0.0009	-0.0015	-0.0008	-0.0016
1.1811	1.9685	+0.0020	+0.0010	+0.0013	+0.0004	+0.0015	0	-0.0005	-0.0011	-0.0003	-0.0013	-0.0012	-0.0018	-0.001	-0.002
1.9685	2.5591	+0.0024	+0.0012	+0.0016	+0.0004	+0.0018	0	-0.0006	-0.0013	-0.0004	-0.0015	-0.0014	-0.0021	-0.0012	-0.0024
2.5591	3.1496	+0.0024	+0.0012	+0.0016	+0.0004	+0.0018	0	-0.0006	-0.0013	-0.0004	-0.0015	-0.0015	-0.0022	-0.0013	-0.0024
3.1496	3.9370	+0.0028	+0.0014	+0.0018	+0.0005	+0.0021	0	-0.0006	-0.0015	-0.0004	-0.0018	-0.0017	-0.0026	-0.0015	-0.0029
3.9370	4.7244	+0.0028	+0.0014	+0.0018	+0.0005	+0.0021	0	-0.0006	-0.0015	-0.0004	-0.0018	-0.0018	-0.0027	-0.0016	-0.003
4.7244	5.5118	+0.0033	+0.0017	+0.0021	+0.0006	+0.0025	0	-0.0008	-0.0018	-0.0005	-0.002	-0.0022	-0.0032	-0.0019	-0.0035
5.5118	6.2992	+0.0033	+0.0017	+0.0021	+0.0006	+0.0025	0	-0.0008	-0.0018	-0.0005	-0.002	-0.0023	-0.0033	-0.002	-0.0035
6.2992	7.0866	+0.0033	+0.0017	+0.0021	+0.0006	+0.0025	0	-0.0008	-0.0018	-0.0005	-0.002	-0.0024	-0.0034	-0.0021	-0.0037
7.0866	7.8740	+0.0038	+0.0020	+0.0024	+0.0006	+0.0028	0	-0.0009	-0.002	-0.0006	-0.0024	-0.0027	-0.0038	-0.0024	-0.0042
7.8740	8.8583	+0.0038	+0.0020	+0.0024	+0.0006	+0.0028	0	-0.0009	-0.002	-0.0006	-0.0024	-0.0028	-0.0039	-0.0025	-0.0043
8.8583	9.8425	+0.0038	+0.0020	+0.0024	+0.0006	+0.0028	0	-0.0009	-0.002	-0.0006	-0.0024	-0.003	-0.0041	-0.0026	-0.0044

ISO SHAFT TOLERANCES - INCH

Nominal		f5		f6		h5		h6		j6		m6	
Over	Incl.	high	low	high	low	high	low	high	low	high	low	high	low
0.1181	0.2362	-0.0004	-0.0006	-0.0004	-0.0007	0	-0.0002	0	-0.0003	+0.0002	-0.0001	+0.0005	+0.0002
0.2362	0.3937	-0.0005	-0.0007	-0.0005	-0.0009	0	-0.0002	0	-0.0004	+0.0003	-0.0001	+0.0006	+0.0002
0.3937	0.7087	-0.0006	-0.0009	-0.0006	-0.0011	0	-0.0003	0	-0.0004	+0.0003	-0.0001	+0.0007	+0.0003
0.7087	1.1811	-0.0008	-0.0011	-0.0008	-0.0013	0	-0.0004	0	-0.0005	+0.0004	-0.0002	+0.0008	+0.0003
1.1811	1.9685	-0.001	-0.0014	-0.001	-0.0016	0	-0.0004	0	-0.0006	+0.0004	-0.0002	+0.0010	+0.0004
1.9685	3.1496	-0.0012	-0.0017	-0.0012	-0.0019	0	-0.0005	0	-0.0007	+0.0004	-0.0003	+0.0012	+0.0004
3.1496	4.7244	-0.0014	-0.002	-0.0014	-0.0023	0	-0.0006	0	-0.0009	+0.0005	-0.0004	+0.0014	+0.0005
4.7244	7.0866	-0.0017	-0.0024	-0.0017	-0.0027	0	-0.0007	0	-0.0010	+0.0006	-0.0004	+0.0016	+0.0006

HYDRAULIC NUTS

INTRODUCTION

Timken[®] Torrington[®] hydraulic nuts have been designed to install and remove tapered bore bearings with minimal effort. The use of hydraulic nuts allows for better control of the bearing internal clearance reduction without damaging the bearing or other components. Also, the hydraulic nut will considerably reduce the downtime during installation or removal of tapered bore bearings.

DESCRIPTION

The Torrington hydraulic nut consists of an internally threaded ring and an externally threaded ring with two o-ring seals.

All hydraulic nuts are supplied with:

- Quick connection fittings (external thread ¼" B.S.P. and internal thread ¾" N.P.T.)
- Two pipe plugs 1/4" B.S.P.
- One set of spare o-rings.

INSTRUCTIONS

When the hydraulic nut is used, the piston must be in the innermost position. For this operation, please ensure that the valve of the hydraulic hose is disconnected from the nut so that the nut is not under pressure.

To contract the piston inside the internally threaded ring, insert a rod bar in one of the four drilled holes located on the outside diameter of the internally threaded ring. Screw the hydraulic nut on the thread with the piston in contact with the surface until the groove machined on the outside diameter of the piston near the outboard face is level with the face of the internally threaded ring.

One of the two threaded holes must be plugged with the ¼" B.S.P. pipe plug before the hydraulic nut is pressurized. The maximum pressure permissible in the hydraulic nut is 14,000 psi (100 Kpa). The oil viscosity recommended is 1,400 **SUS** (300 cst) at operating temperature, (SAE 90 oil). To avoid over extension of the piston, a second groove has been machined on the outside diameter of the piston inboard of the one used to judge contraction. When this second groove is level with the face of the internally threaded ring, the piston has reached its length of travel as shown on the tables. If the second groove of the piston travels past the face of the internally threaded ring, the piston will not be correctly guided inside the threaded ring and the hydraulic nut can be damaged.

Should the oil start to leak from the piston area, it is certain that the o-ring seals are damaged or worn and need to be replaced.

When the hydraulic nut is not in use, ensure that the threaded holes are plugged to prevent the entry of contaminants in the piston cavity. To preserve against corrosion during storage, apply a coat of light oil on the hydraulic nut surfaces.

ORDERING COMPONENTS

Contact your local Timken Sales office or nearest authorized Timken bearing distributor for ordering Torrington hydraulic nut systems.

ENGINEERING SERVICES

Special applications should be referred to a Timken Sales Engineer for recommendations.

Installation

the bearing on tapered

Hydraulic nut used to mount the bearing on a pull type sleeve.

Hydraulic nut used to mount the bearing on a push type adapter sleeve.

journal.

Removal

Hydraulic nut used to withdraw a push type adapter sleeve.

48 / Mounting Guide

For your nearest Timken sales representative, call (800) 223-1954. Outside the U.S. and Canada, call (330) 438-3000.

Timken[®], Torrington[®], and Fafnir[®] are registered trademarks of The Timken Company. www.timken.com

WORLDWIDE LEADER IN BEARINGS AND STEEL

©2003 by The Timken Company Printed in U.S.A. 5M-10-03-8 Order No. 5734 (formerly Torrington No. 638)